Mario Goisis等人撰写的“体外声学冲击波以治疗多甲基甲基丙烯酸酯的并发症”最初是在Springer Science的独家许可下出版的吗?Business Media,LLC,Springer Nature和国际美学整形外科学会的一部分。由于随后决定在“开放访问模型”下发布该文章的结果,该文章的版权通知于2025年1月16日更改给作者2024年,并且该文章现在在创意共享署名CC下进行了分配。此许可证允许使用,重复,适应,分发和复制任何媒介或格式,只要给予原始作者提供适当的信用,并提供了源,并提供了与Creative Commons许可证的链接,并指示任何更改。请阅读完整的许可证
聚(烷基氰基丙烯酸酯)纳米粒子于 25 年前首次开发,其利用的是该聚合物在体内的降解潜力及其在活体组织中的良好接受性。从那时起,人们设计出了各种各样的聚(烷基氰基丙烯酸酯)纳米粒子,包括纳米球、含油和含水的纳米胶囊。这使得许多类型的药物(包括那些存在严重输送问题的药物)的体内输送成为可能。聚(烷基氰基丙烯酸酯)纳米粒子被证明可以改善癌症、感染和代谢疾病等严重疾病的治疗。例如,它们可以跨越屏障运输药物,从而将治疗剂量输送到难以到达的组织,包括大脑或多重耐药细胞。本综述介绍了聚(烷基氰基丙烯酸酯)纳米粒子作为通过不同给药途径在体内给药的各种药物的输送系统的设计方面的最新发展和成就。
摘要:当用聚合物基材料补充或替换组织或器官时,生物功能性和生物相容性至关重要。在这里,我们制备了基于硬脂基甲基丙烯酸酯 (SM) 和乙烯基吡咯烷酮 (VP) 的生物相容性 SM- x 网络,它们具有自修复和形状记忆特性。摩尔比在 10% 到 90% 之间逐渐从亲水单元变为疏水单元,以获得满足各种潜在生物应用要求的凝胶。除了具有随时间变化的粘弹性之外,凝胶的机械性能还可以通过引入反应介质的 SM 量来控制。低 SM 含量的凝胶不能完全恢复到其初始模量值,而浓度 ≥ 60% 时形成的凝胶由于动态疏水相互作用而完全可逆,这对自修复行为也很有效。此外,所有网络都可以在几秒钟内完全恢复其永久形状。接种在 SM-x 水凝胶上的人体皮肤成纤维细胞的活力与结构的水接触角密切相关,在所有 x 值下均超过 82%。根据这些发现,SM-x 凝胶样品的广泛特性可能显示出满足各种生物医学应用需求的巨大潜力。关键词:自修复、形状记忆、硬脂基甲基丙烯酸酯、乙烯基吡咯烷酮、生物相容性
电子邮件:victor.fslima@gmail.com摘要jabuti-piranga(Carbonaria chelonoidis),属于Chelonia和Cryptodira suborder的订单,是一个爬行动物,其特征是具有甲壳耦合的脊柱。该物种与其他物种的区别是通过在其四肢的远端具有红色的颜色,并呈现前额叶尺度和小。这项工作旨在报告使用伯恩斯(Burns)的jabuti-piranga carapace(C。Carbonaria)受害者创伤的部分重建中与氰基丙烯酸酯相关的碳氢化合物叶片的使用。它是在兽医诊所学校参加的A Jabuti-Piranga(C. C. C. Carbonaria)女性,成人,重2.5公斤,部分损失了其甲壳,这是与与家庭大火有关的船体创伤的受害者。作为治疗方法,用氯氧化物和芦荟提取物,Enrofloxacin和Meloxicam给药以及与氰基丙烯酸酯树脂相关的蜡叶片的应用清除伤口,以重建其船体。因此,使用与蓝晶相关的烃羊毛可有效地重建甲壳和骨骼和角膜,从而可以对内脏器官和睾丸的外骨骼进行保护。关键字:Chelonia,Cryptodira,外骨骼,创伤。摘要红脚的乌龟(Chelonoidis Carbonaria),与Chelonia和子顺序Cryptodira订购的ordogogoge,是爬行动物,其特征是其脊柱将其脊柱融合到甲壳上。在兽医教学诊所接受了一名女性,成年的红脚乌龟(C. carbonaria),加权2.5 kg。该物种在其四肢的远端以及分裂和小的前额叶尺度上以红色的色彩为特征。这项研究旨在报告与氰基丙烯酸酯有关的蜡叶片,以部分重建是由于烧伤引起的创伤的红色脚龟(C. bobonaria)的甲壳的部分重建。该动物由于由国内火灾造成的壳创伤而导致其甲壳的部分损失。作为治疗,使用洗涤胺和芦荟提取物进行伤口清洁,给药
摘要:具有表型读数的细胞测试方法经常用于毒性筛选。但是,缺少关于如何验证命中结果以及如何将此信息与其他数据整合以进行风险评估的指导。我们在此介绍此类程序,并以基于神经嵴细胞 (NCC) 的吡氧菌酯发育毒性案例研究为例。在 UKN2 检测中筛选了一个潜在环境毒物库,该检测同时测量 NCC 中的迁移和细胞毒性。几种被称为线粒体呼吸链复合物 III 抑制剂的甲氧基菌酯杀菌剂成为特定命中结果。从这些中,吡氧菌酯被选为从基于细胞的测试到毒理学预测的路线图的典范。经过严格的确认测试,开发了一条不良结果途径以提供可测试的毒性假设。机制研究表明,在 24 小时预暴露后,氧消耗率在亚 µ M 浓度的啶氧菌酯下受到抑制。在迫使细胞依赖线粒体的测定条件下,迁移在 100 nM 范围内受到抑制。生物动力学模型用于预测细胞内浓度。假设口服啶氧菌酯,与可接受的每日摄入量一致,基于生理的动力学模型表明大脑浓度可能达到 0.1–1 µ M。利用这种广泛的危害和毒代动力学数据,我们计算出最低体外出发点和最高预测组织浓度之间的暴露范围≥80。因此,我们的研究体现了一种命中跟踪策略,并为下一代风险评估铺平了道路。
丙烯酸义齿上衬里成分的分离很常见。因此,改善衬里和丙烯酸义齿之间的粘附至关重要。Piranha溶液用于治疗丙烯酸以增强键合强度。这项研究评估了Piranha溶液(过氧化氢H 2 O 2和硫酸H 2 SO 4的组合)对增强丙烯酸树脂和基于有机硅齿的软衬里的粘附强度的影响。八十种聚甲基丙烯酸酯(PMMA)样品的表面粗糙度(n = 20),剪切键强度(n = 20对),润湿性(n = 20)和硬度测试(n = 20)。样品被随机分为W组(无处理)和P组(使用Piranha溶液处理)。随后是有机硅软内衬。介绍仪,通用测试设备,光接触角和岸D持续时间设备分别用于分析表面粗糙度,剪切键强度,润湿性和硬度样本,然后研究故障机制。t检验用于分析数据。在P组(表面粗糙度,剪切键强度和润湿性)值(P≤0.05)中观察到显着变化。比对照组(W组)(W组)(P组)的Piranha溶液治疗组(P组)显示出更高的表面粗糙度,剪切键强度和润湿性,并且两组之间硬度值的变化不显着。这项研究的发现表明,使用Piranha溶液可以是增强PMMA表面特性的非常成功的方法,从而增强了有机硅软衬里的键合能力。
由126种在全球范围广泛的物种组成,在热带东南亚国家,例如印度尼西亚,马来西亚,缅甸,缅甸,柬埔寨,泰国,泰国,甚至是南亚地区,即印度,即印度。1,2 Kaempferia Galanga L.在印度尼西亚被称为Kencur,已在经验上被约109个族裔使用。在印度尼西亚,Kaempferia Galanga出现在苏门答腊,爪哇,卡利曼丹,东努萨·坦加拉,苏拉威西和马卢库的几个地区。3,它排名第16位是使用最广泛的药用植物。4 Kaempferia galanga根茎传统上被用作抗内部的弹药,镇痛,抗菌,抗氧化剂,杀性性和血管肌。5 - 14 kaempferia galanga L.的根茎和叶子具有治疗伤口,头痛,溃疡,普通感冒,咳嗽,哮喘和乳腺癌的特性。15 - 17在2014年,Kumar报告说,Kaempferia Galanga L.的根茎含有多达50个挥发性油15 - 17在2014年,Kumar报告说,Kaempferia Galanga L.的根茎含有多达50个挥发性油
近年来,生物医学已广泛地集中在开发具有反应性行为和可自定义特性的生物学用途药物输送系统上。在药物载体中,水凝胶可以是合适的选择。由于它们具有特定的表面和结构,可以选择性地维护和运输药物到操作区域,因此它们以有利的时间范围释放,以提供更高的治疗作用。在这里,我们宣布在高内相乳液(HIPES)中宣布聚(藻酸钠(ALG)和2-羟基乙基甲基丙烯酸酯(HEMA))的共聚合物的合成,以产生高度多孔的水凝胶,以产生高度的多孔水凝胶,这些水凝胶已发育为化学疗法药物额肌蛋白(Dox)。可以随着聚合物合成程序中涉及的变量而改变孔隙率的百分比。发达的珠的特征是通过傅立叶变换红外光谱(FTIR),热重分析(TGA)和扫描电子显微镜(SEM)进行表征。在37和42°C的pH 5.4和7.4中研究了体外释放研究,这表明DOX有效地掺入了多孔水凝胶中,并通过pH调节和溶胀损失过程以控制的方式释放。在合成的聚螺旋结构中存在羟基和羧酸基团,增强了所得水凝胶的pH敏感性和肿胀行为,可以选择为响应肿瘤的酸性释放药物,以应对肿瘤的酸性状况,从而为局部局部和有效的癌症治疗提供了有希望的策略和有效的癌症治疗。
氰基丙烯酸酯因其出色的粘合能力而广泛关注,并在各个行业中发现了应用。这项研究深入研究了氰基丙烯酸酯化学和聚合机制的基本方面,以应对与早产相关的挑战,并增强对基本过程的理解。CyanoAcrylates以其特殊的特性而被认可,经历了迅速的聚合,以微量的水分催化。问题的本质在于需要优化聚合过程,以防止过早粘结并确保控制固化。调查涉及对氰基丙烯酸酯的化学构成及其粘合力的全面分析。值得注意的是,该研究探讨了第二次世界大战期间氰基丙烯酸酯的无意发现,强调了它们的多功能应用以及对它们反应性的细微理解的需求。发现揭示了氰基丙烯酸酯聚合的复杂性,阐明了影响该过程的因素,包括温度,湿度和底物组成。
摘要 利用拉曼光谱、差示扫描量热法、温度调制差示扫描量热法、介电光谱和流变学研究了将液体电解质限制在聚合物基质中的影响。聚合物基质由热固化乙氧基化双酚 A 二甲基丙烯酸酯获得,而液体电解质由基于乙基咪唑阳离子 [C 2 HIm] 和双(三氟甲烷磺酰基)酰亚胺 [TFSI] 阴离子的质子离子液体组成,掺杂有 LiTFSI 盐。我们报告称,受限液相表现出以下特征:(i)结晶度明显降低;(ii)弛豫时间分布更宽;(iii)介电强度降低;(iv)在液体到玻璃化转变温度 (T g ) 下协同长度尺度降低;和 (v)局部 T g 相关离子动力学加速。后者表明两个纳米相之间的界面相互作用较弱,而几何限制效应较强,这决定了离子动力学和耦合的结构弛豫,从而使 T g 降低约 4 K。我们还发现,在室温下,结构电解质的离子电导率达到 0.13 mS/cm,比相应的本体电解质低十倍。三种移动离子(Im +、TFSI - 和 Li +)对测量的离子电导率有贡献,从而隐性降低了 Li + 的迁移数。此外,我们报告称,所研究的固体聚合物电解质表现出将机械载荷转移到结构电池中的碳纤维所需的剪切模量。基于这些发现,我们得出结论,优化的