目标:评估三单元固定局部假牙(FPD)的断裂强度和线性伸长,并在老龄化之前和之后用传统和新材料制造,用于固定假肢。方法:制造了六十个三单元FPD的模型,并将固定在模拟上颌第二前磨牙的替换的CO-CR模型上。将样品随机分为3组:金属 - 陶瓷(MCR),掺杂石墨烯的聚甲基丙烯酸酯(PMMA-GR)和聚甲基丙烯酸丙烯酸酯(PMMA)。一半的样品直接进行断裂测试,而其余的一半进行了老化过程,然后使用电动力测试机进行断裂载荷测试。骨折负荷和断裂值处的伸长率进行了统计分析。结果:在不同材料之间检测到显着差异(P <0.05)。所有组均显示出衰老后的断裂负荷和伸长率的减少,但除了pMMA组(p = 2.012e-19)(p = 3.8e-11)外,但没有统计学意义。结论:与PMMA相比,MCR和PMMA-GR三单元FPD显示出更高的断裂强度和较低的断裂伸长率。与PMMA相比, MCR和PMMA GR对衰老过程的抗性更高。 临床意义:PMMA-GR可以被认为是长期临时修复体的材料,因为其ME Chanical行为和耐老化的耐药性更像MCR,而不是PMMA。MCR和PMMA GR对衰老过程的抗性更高。临床意义:PMMA-GR可以被认为是长期临时修复体的材料,因为其ME Chanical行为和耐老化的耐药性更像MCR,而不是PMMA。
1. Aliakseyeu, A.、Hlushko, R. 和 Sukhishvili, SA (2022)。水溶液中具有较高临界溶液温度的非离子星形聚合物。聚合物化学,13(18),2637-2650。2. Daniels, GC、Hinnant, KM、Brown, LC、Weise, NK、Aukerman, MC 和 Giordano, BC (2022)。疏水性丙烯酸酯官能化的聚乙二醇 (PEG) 的共聚物可逆加成-断裂链转移合成:表面和泡沫性能研究。Langmuir,38(15),4547-4554。3. Kuzmyn, AR、Teunissen, LW、Fritz, P.、van Lagen, B.、Smulders, MM 和 Zuilhof, H. (2022)。通过水中的可见光诱导聚合 (SI-PET-RAFT) 在金表面上形成二嵌段和随机防污生物活性聚合物刷。Advanced Materials Interfaces,9(3),2101784。4. Moura, D.、Pereira, AT、Ferreira, HP、Barrias, CC、Magalhães, FD、Bergmeister, H. 和 Gonçalves, IC (2023)。含石墨烯基材料的聚(2-羟乙基甲基丙烯酸酯)水凝胶用于血液接触应用:从柔软惰性材料到坚固可降解材料。Acta Biomaterialia,164,253-268。5. Shaulli, X.、Rivas-Barbosa, R.、Bergman, MJ、Zhang, C.、Gnan, N.、Scheffold, F. 和 Zaccarelli, E. (2023)。通过超分辨率显微镜和数值模拟探测微凝胶的温度响应性及其与固体表面的相互作用。Acs Nano,17(3),2067-2078。
Plexus ® MA8120 开放时间约为 20 分钟,MA8120 是一种先进的直接金属低卤双组分甲基丙烯酸酯结构胶粘剂。它专为各种金属、涂层、塑料和复合组件的结构粘合而设计。MA8120 可以出色地将无需底漆的金属粘合到其他金属、工程热塑性塑料和复合组件上,几乎无需表面处理。按 1:1 的体积比混合,MA8120 可以将热浸镀锌钢和电镀锌钢以及其他金属粘合到不同的基材上。该产品为工业和运输装配提供了高强度、韧性、耐环境性和耐疲劳性的卓越组合。有关更多详细信息,请参阅技术数据表。
产品描述Plexus®MA832是一种高级两部分的甲基丙烯酸酯粘合剂,设计用于无需底漆的金属的结构键合。此外,MA832在几乎没有表面制备的情况下完成了粘结热塑性和复合组件的出色工作1。以10:1的比例合并,MA832的工作时间约为14分钟,在55分钟内达到了约3.5 MPa。该产品提供了高强度,出色的疲劳耐力,出色的冲击力和出色韧性的独特组合。plexus ma832有灰色可用,可在现成的墨盒,20升桶或200升鼓中提供。使用标准仪表混合设备可以将产品作为非散热凝胶分配。
近年来,生物医学已广泛地集中在开发具有反应性行为和可自定义特性的生物学用途药物输送系统上。在药物载体中,水凝胶可以是合适的选择。由于它们具有特定的表面和结构,可以选择性地维护和运输药物到操作区域,因此它们以有利的时间范围释放,以提供更高的治疗作用。在这里,我们宣布在高内相乳液(HIPES)中宣布聚(藻酸钠(ALG)和2-羟基乙基甲基丙烯酸酯(HEMA))的共聚合物的合成,以产生高度多孔的水凝胶,以产生高度的多孔水凝胶,这些水凝胶已发育为化学疗法药物额肌蛋白(Dox)。可以随着聚合物合成程序中涉及的变量而改变孔隙率的百分比。发达的珠的特征是通过傅立叶变换红外光谱(FTIR),热重分析(TGA)和扫描电子显微镜(SEM)进行表征。在37和42°C的pH 5.4和7.4中研究了体外释放研究,这表明DOX有效地掺入了多孔水凝胶中,并通过pH调节和溶胀损失过程以控制的方式释放。在合成的聚螺旋结构中存在羟基和羧酸基团,增强了所得水凝胶的pH敏感性和肿胀行为,可以选择为响应肿瘤的酸性释放药物,以应对肿瘤的酸性状况,从而为局部局部和有效的癌症治疗提供了有希望的策略和有效的癌症治疗。
12/03/2024 11/26/2024 N/A(S)2-丙酸,2-甲基 - 丁基酯,与2-DodecylHexadecyl 2-二甲基2-丙苯甲甲基,2-羟基甲基苯甲酸酯,2-羟基甲酮酮酮酸盐2-((2- 2--甲基1-甲基1-甲基1-氧化物) - 2-(2-甲基1-甲基1-氧化酯),酯和2--氧化酯,酯和2-酯-2-酯酯酯酯, tetradecyctadecyl 2-甲基-2-丙烯酸酯 *“批准”一词表明提交已通过快速初始屏幕,以确保在提交中提供了所有必需的信息和文档。
将基于多甲基丙烯酸酯/多甲基丙烯酸酯(PS/ PMMA)块共聚物组成的自组装形成的纳米骨的最佳策略投资到硅底物中。作者表明,特定问题与通过自组装获得的PS面膜的等离子体蚀刻有关。的确,由于亚15 nm接触孔的纳米尺寸及其固有的高纵横比(> 5),因此必须重新审视微电子工业中通常用于蚀刻SIO 2和硅的等离子体蚀刻过程。特别是,蚀刻各向异性依赖于特征侧壁上钝化层的形成的过程不适合纳米尺寸,因为这些层倾向于填充导致蚀刻停止问题的孔。同时,与在高方面比率纳米骨中克服差分充电效应的典型过程相比,必须增加离子轰击能。然而,通过将适当的过程(例如同步的脉冲等离子体)进行开发,作者表明,通过使用块共聚物和硬面膜策略,可以将70nm深的孔深孔进入硅。这些实验产生的另一个有趣的观察结果是,对于亚15 nm孔,几个nm的临界维度(CD)缩合会导致强大比率依赖性蚀刻速率。此外,在每个等离子体步骤之后,对孔的CD的分散体进行了仔细的分析表明,CD控制远非令人满意的高级CMOS技术要求。v C 2014美国真空学会。[http://dx.doi.org/10.1116/1.4895334]关键问题来自从PS/PMMA矩阵中的未完成的PMMA在我们的自组装过程中的去除:可变量的PMMA保留在PS孔中,从而导致蚀刻步骤中的微功能效应,从而产生CD控制损失。也许可以通过将紫外线释放酸处理与乙酸处理相结合,以在等离子体蚀刻之前提供不含PMMA残基的PS膜,以解决此问题。
此方法可以更轻松地处理非常快速的甲基丙烯酸酯类型。No-Mix方法根本不需要混合。工件表面是用快速干燥的硬化漆进行预涂层的。然后可以将干零件储存几周,也可以运输到另一个工作场所而不会显着失去反应性。一旦粘合剂接触Hardener漆,硬化就会开始而没有任何进一步的混合。此方法可用于最大距离为0.8 mm的关节间隙(两侧都有硬化漆的应用),但不适合更大的关节宽度。通过将NO-MIX方法用作“ 1组分”处理技术,可以轻松避免给药,混合物和陶器问题。该系统适用于键合操作,从单部分到系列生产。
b - 环氧乙烷)和聚(苯乙烯- b - 甲基丙烯酸甲酯)。5-7 据报道,这些 BCP 的最小层状畴间距分别为 16 nm 和 17.5 nm 全螺距。8,9 为了进一步将此限制缩小到 10 nm 以下的域大小,已报道了基于使用高 χ 嵌段的各种策略。例如,Jo 等人报道了含有半螺距为 5 nm 的 BCP 的三氟乙基丙烯酸酯本体薄膜,10 而 Hancox 等人建议使用氟化长链引发剂作为第一个嵌段来合成极性聚(丙烯酸),其呈现 3.8 nm 半螺距的层状形态。11 此外,Woo 等人报道了在 PS 和 PMMA 嵌段之间使用短甲基丙烯酸嵌段来获得亚 10 nm 域。12