摘要:在骨组织工程中,支架属性(例如孔径和机械强度)至关重要。本研究以聚己内酯 (PCL) 为原料,加入环氧氯丙烷 (Epi-PCL) 和甲基丙烯酰氯 (Meth-Cl),合成聚己内酯二甲基丙烯酸酯 (PCLDMA)。将 PCLDMA 与聚乳酸 (p-PLA) 混合,使用立体光刻 (SLA) 3D 打印骨支架。分析技术包括核磁共振 (NMR)、傅里叶变换红外光谱 (FTIR)、扫描电子显微镜 (SEM) 和压缩测试。使用人类成骨细胞 (HOB) 研究了降解动力学和细胞活力。研究结果表明,PCLDMA/p-PLA 复合支架优于原始聚合物。值得注意的是,PCLDMA-60(60% PCLDMA、40% p-PLA)表现出最佳性能。抗压强度从 0.019 到 16.185 MPa 不等,孔隙率从 2% 到 50%,降解率在三天内从 0% 到 0.4%。细胞活力测定证实了不同 PCLDMA 比率的生物相容性。总之,PCLDMA/p-PLA 复合支架,尤其是 PCLDMA-60,在骨组织工程中显示出巨大的潜力。
揭示了稀有地掺杂的Yttrium Iron石榴石的宽带Terahertz Faraday旋转机制Q.D.Xie,Z.C。 bin,T.Y。 Zhang,M。Hu,Q.H. Yang和P.H. Zhou 59在细菌纤维素上直接整合氧化铁纳米颗粒,以使水中的染料降解M.L.M. Budlayan,J.N。 Patricio,D.C。Palangyos,R.A。 Guerrero和S.D. ARCO 67研究HCl预处理和K 2 FEO 4-KOH催化剂对空棕榈油水果堆的石墨化过程I. Nuriskasari的石墨化过程的影响I. Nuriskasari,A.Z.。 Syahrial,T.A。 Ivandini,A。Sumboja,B。Priyono和Q.Y. yan 75苯胺四聚体装饰氟丙烯酸酯聚合物作为高性能耐腐蚀性涂层Z.H. Shen,M.Y。 an,q.q。 Hu和Q.小Xiao 81基于碳纳米材料的聚合物M.N.的抗反射材料的光学特性 Zhukava和F.F. komarov 87自然超疏水叶上的水微颗粒及其弹性复制品M.L.M. Budlayan,D.C。Palangyos,J.N。 Patricio,S.D。 Arco和R.A. Guerrero 95 NMC811的特征,使用稻壳衍生的二氧化硅涂料F. Angellinnov,A。Subhan,T.A。 Ivandini,A。Sumboja,B。Priyono,Q.Y. Yan和A.Z. Syahrial 101Xie,Z.C。bin,T.Y。Zhang,M。Hu,Q.H. Yang和P.H. Zhou 59在细菌纤维素上直接整合氧化铁纳米颗粒,以使水中的染料降解M.L.M. Budlayan,J.N。 Patricio,D.C。Palangyos,R.A。 Guerrero和S.D. ARCO 67研究HCl预处理和K 2 FEO 4-KOH催化剂对空棕榈油水果堆的石墨化过程I. Nuriskasari的石墨化过程的影响I. Nuriskasari,A.Z.。 Syahrial,T.A。 Ivandini,A。Sumboja,B。Priyono和Q.Y. yan 75苯胺四聚体装饰氟丙烯酸酯聚合物作为高性能耐腐蚀性涂层Z.H. Shen,M.Y。 an,q.q。 Hu和Q.小Xiao 81基于碳纳米材料的聚合物M.N.的抗反射材料的光学特性 Zhukava和F.F. komarov 87自然超疏水叶上的水微颗粒及其弹性复制品M.L.M. Budlayan,D.C。Palangyos,J.N。 Patricio,S.D。 Arco和R.A. Guerrero 95 NMC811的特征,使用稻壳衍生的二氧化硅涂料F. Angellinnov,A。Subhan,T.A。 Ivandini,A。Sumboja,B。Priyono,Q.Y. Yan和A.Z. Syahrial 101Zhang,M。Hu,Q.H.Yang和P.H. Zhou 59在细菌纤维素上直接整合氧化铁纳米颗粒,以使水中的染料降解M.L.M. Budlayan,J.N。 Patricio,D.C。Palangyos,R.A。 Guerrero和S.D. ARCO 67研究HCl预处理和K 2 FEO 4-KOH催化剂对空棕榈油水果堆的石墨化过程I. Nuriskasari的石墨化过程的影响I. Nuriskasari,A.Z.。 Syahrial,T.A。 Ivandini,A。Sumboja,B。Priyono和Q.Y. yan 75苯胺四聚体装饰氟丙烯酸酯聚合物作为高性能耐腐蚀性涂层Z.H. Shen,M.Y。 an,q.q。 Hu和Q.小Xiao 81基于碳纳米材料的聚合物M.N.的抗反射材料的光学特性 Zhukava和F.F. komarov 87自然超疏水叶上的水微颗粒及其弹性复制品M.L.M. Budlayan,D.C。Palangyos,J.N。 Patricio,S.D。 Arco和R.A. Guerrero 95 NMC811的特征,使用稻壳衍生的二氧化硅涂料F. Angellinnov,A。Subhan,T.A。 Ivandini,A。Sumboja,B。Priyono,Q.Y. Yan和A.Z. Syahrial 101Yang和P.H.Zhou 59在细菌纤维素上直接整合氧化铁纳米颗粒,以使水中的染料降解M.L.M.Budlayan,J.N。 Patricio,D.C。Palangyos,R.A。 Guerrero和S.D. ARCO 67研究HCl预处理和K 2 FEO 4-KOH催化剂对空棕榈油水果堆的石墨化过程I. Nuriskasari的石墨化过程的影响I. Nuriskasari,A.Z.。 Syahrial,T.A。 Ivandini,A。Sumboja,B。Priyono和Q.Y. yan 75苯胺四聚体装饰氟丙烯酸酯聚合物作为高性能耐腐蚀性涂层Z.H. Shen,M.Y。 an,q.q。 Hu和Q.小Xiao 81基于碳纳米材料的聚合物M.N.的抗反射材料的光学特性 Zhukava和F.F. komarov 87自然超疏水叶上的水微颗粒及其弹性复制品M.L.M. Budlayan,D.C。Palangyos,J.N。 Patricio,S.D。 Arco和R.A. Guerrero 95 NMC811的特征,使用稻壳衍生的二氧化硅涂料F. Angellinnov,A。Subhan,T.A。 Ivandini,A。Sumboja,B。Priyono,Q.Y. Yan和A.Z. Syahrial 101Budlayan,J.N。Patricio,D.C。Palangyos,R.A。 Guerrero和S.D.ARCO 67研究HCl预处理和K 2 FEO 4-KOH催化剂对空棕榈油水果堆的石墨化过程I. Nuriskasari的石墨化过程的影响I. Nuriskasari,A.Z.。Syahrial,T.A。Ivandini,A。Sumboja,B。Priyono和Q.Y. yan 75苯胺四聚体装饰氟丙烯酸酯聚合物作为高性能耐腐蚀性涂层Z.H. Shen,M.Y。 an,q.q。 Hu和Q.小Xiao 81基于碳纳米材料的聚合物M.N.的抗反射材料的光学特性 Zhukava和F.F. komarov 87自然超疏水叶上的水微颗粒及其弹性复制品M.L.M. Budlayan,D.C。Palangyos,J.N。 Patricio,S.D。 Arco和R.A. Guerrero 95 NMC811的特征,使用稻壳衍生的二氧化硅涂料F. Angellinnov,A。Subhan,T.A。 Ivandini,A。Sumboja,B。Priyono,Q.Y. Yan和A.Z. Syahrial 101Ivandini,A。Sumboja,B。Priyono和Q.Y.yan 75苯胺四聚体装饰氟丙烯酸酯聚合物作为高性能耐腐蚀性涂层Z.H.Shen,M.Y。 an,q.q。 Hu和Q.小Xiao 81基于碳纳米材料的聚合物M.N.的抗反射材料的光学特性 Zhukava和F.F. komarov 87自然超疏水叶上的水微颗粒及其弹性复制品M.L.M. Budlayan,D.C。Palangyos,J.N。 Patricio,S.D。 Arco和R.A. Guerrero 95 NMC811的特征,使用稻壳衍生的二氧化硅涂料F. Angellinnov,A。Subhan,T.A。 Ivandini,A。Sumboja,B。Priyono,Q.Y. Yan和A.Z. Syahrial 101Shen,M.Y。an,q.q。Hu和Q.小Xiao 81基于碳纳米材料的聚合物M.N.的抗反射材料的光学特性Zhukava和F.F. komarov 87自然超疏水叶上的水微颗粒及其弹性复制品M.L.M. Budlayan,D.C。Palangyos,J.N。 Patricio,S.D。 Arco和R.A. Guerrero 95 NMC811的特征,使用稻壳衍生的二氧化硅涂料F. Angellinnov,A。Subhan,T.A。 Ivandini,A。Sumboja,B。Priyono,Q.Y. Yan和A.Z. Syahrial 101Zhukava和F.F.komarov 87自然超疏水叶上的水微颗粒及其弹性复制品M.L.M.Budlayan,D.C。Palangyos,J.N。 Patricio,S.D。 Arco和R.A. Guerrero 95 NMC811的特征,使用稻壳衍生的二氧化硅涂料F. Angellinnov,A。Subhan,T.A。 Ivandini,A。Sumboja,B。Priyono,Q.Y. Yan和A.Z. Syahrial 101Budlayan,D.C。Palangyos,J.N。Patricio,S.D。Arco和R.A. Guerrero 95 NMC811的特征,使用稻壳衍生的二氧化硅涂料F. Angellinnov,A。Subhan,T.A。 Ivandini,A。Sumboja,B。Priyono,Q.Y. Yan和A.Z. Syahrial 101Arco和R.A. Guerrero 95 NMC811的特征,使用稻壳衍生的二氧化硅涂料F. Angellinnov,A。Subhan,T.A。Ivandini,A。Sumboja,B。Priyono,Q.Y. Yan和A.Z. Syahrial 101Ivandini,A。Sumboja,B。Priyono,Q.Y.Yan和A.Z. Syahrial 101Yan和A.Z.Syahrial 101
分子中含有带负电的氧和氮),因此很容易受到与活性氢(例如,不同化合物的羟基上的氧)结合的亲核中心的攻击,从而主要在氮上形成阴离子 3,4 。然后,活性氢( AH ,现在将这样表示)与带负电的氮结合形成 IEM 封端的衍生物,当上述“不同化合物”( DC )的 AH 基团是醇或胺时,分别具有耐水的氨基甲酸酯或脲键。除了水之外,这种衍生物(包括源自单个 AH 但受阻基团的“封端”IEM 化合物,例如ϵ-己内酰胺或 MEKO)可以成功地与 IEM 可能与之反应的其他含 AH 化合物混合,包括质子溶剂,例如乙醇 2 。如果 DC 包含多个 AH 基团,则 IEM 甲基丙烯酸酯基团的可聚合乙烯基 C=C 双键同样可以引入到每个位置。然后,这种 IEM 封端衍生物将能够参与后续的交联聚合,当将热量和/或紫外线引入反应室 2 时,可诱导交联聚合。本引发剂随后将发生均裂,形成自由基 5 。
目的:合成HER2适体结合的氧化铁纳米粒子,表面包覆聚(2-(二甲氨基)乙基甲基丙烯酸酯)-聚(2-甲基丙烯酰氧乙基磷酰胆碱)嵌段共聚物(IONPPPs)。方法:表征包括分子结构、化学组成、热稳定性、磁性、适体相互作用、晶体性质和微观特征。后续研究集中于IONPPPs用于体外癌细胞识别。结果:结果表明,二嵌段共聚物具有高生物相容性,浓度高达150 μ g / ml时无明显毒性。简便的涂层工艺产生了IONPP复合物,其具有13.27 nm的金属核和3.10 nm的聚合物涂层。用HER2靶向DNA适体进行功能化后,IONPPP通过磁化分离增强了对HER2扩增的SKBR3细胞的识别。结论:这些发现强调了 IONPPP 在癌症研究和临床应用中的潜力,并通过概念验证方法展示了诊断效果和 HER2 蛋白靶向性。
开发新材料是应对电池技术挑战的关键。离子液体基聚合物电解质具有不可燃性和高热稳定性,可以降低爆炸风险。LiMPO 4 正极(M=Fe、Mn、Co……)的使用有助于提高热稳定性,这是因为金属和氧之间存在共价键。有机电极具有灵活性,可以促进可充电锂电池的回收利用。在本研究中,这些材料已被用于超安全、灵活、绿色和高倍率锂电池。使用拉曼、XPS、DSC 和介电光谱研究了它们的物理性质,并结合一些 LiMPO 4 正极探索了离子液体基聚合物电解质的电化学性能。研究了离子配位、离子电导率、氧化稳定性、电极材料的溶解和电化学性质。为了克服有机电极材料含碳量高、活性物质溶解等缺点,本文还研究了新型纳米纤维有机自由基聚合物[(聚(2,2,6,6-四甲基哌啶氧-4-基甲基丙烯酸酯)(PTMA)]电极、含有甲氧基官能团(CH3O)的新型有机正极材料2,3,6,7,10,11-六甲氧基三苯并菲(HMTP)]和Py14TFSI基聚合物电解质。
这项研究介绍了一种新的方法,用于使用人工神经网络(ANN)和响应表面方法(RSM)进行生物相容性聚乳酸(PLA)/聚甲基甲基丙烯酸酯(PMMA)混合。目标是优化PMMA含量,喷嘴温度,栅格角度和打印速度,以增强形状记忆力和机械强度。材料,PLA和PMMA是融化的,并使用基于颗粒的3D打印机打印4D。差异扫描量热法(DSC)和动态机械热分析(DMTA)评估混合物的热行为和兼容性。ANN模型与RSM模型相比,ANN模型表现出了出色的预测准确性和概括能力。实验结果显示,形状回收率为100%,最终拉伸强度为65.2 MPa,明显高于纯PLA。用优化参数打印的生物螺旋螺旋体展示了出色的机械性能和形状的记忆行为,适用于生物医学应用,例如骨科和牙科植入物。本研究提出了一种用于4D打印PLA/PMMA混合物的创新方法,强调了它们在创造先进的高性能生物相容性材料方面的潜力。
除极少数例外情况外,这都是必要的。32,33 由于 c 值低,该系统的特征尺寸很难达到 22 纳米以下。26,34 因此,人们对这种 BCP 以及包含相关片段的相关 BCP 进行了广泛关注,以提高其在下一代光刻技术中的性能。35,36 然而,到目前为止,通过在低温下快速热退火(例如几分钟)在多功能基底上的小特征尺寸的 BCP 薄膜内获得正常排列的圆柱形或层状畴仍然是一项艰巨的挑战。此前,一些研究小组报道,聚甲基丙烯酸酯疏水嵌段(表示为 PMA(Az))侧链中含偶氮苯的液晶 (LC) 链段有助于通过热退火或溶剂退火形成正常排列的圆柱形微区 37 – 39,包括聚环氧乙烷 (PEO) 40 – 42 和聚 (4-乙烯基吡啶) (P4VP) 43。对于这些 BCP,圆柱体的相窗口相当宽。此外,P4VP- b -PMA(Az) 薄膜需要长期溶剂退火,43 这不适合用于下一代光刻技术。而且,这些 BCP 的蚀刻选择性不足。44,45
超薄芯片(UTC)需要满足柔性电子和3D集成电路(ICS)的性能和包装相关的要求。然而,对UTC的处理(厚度<50μm),尤其是在变薄之后,这是一项艰巨的任务,因为过度的机械应力可能导致破裂。可以通过将压力限制为可接受的水平来防止这种损害。在此,我们提出了一种基于聚甲基丙烯酸酯(PMMA)牺牲层(20μm-厚)的新的可靠且具有成本效益的方法。PMMA层在UTC上的应力下降4个数量级,因此,已经实现了从玻璃基板上的UTC(35μm-厚)的可靠去除或脱离。相对于使用紫外可固化磁带的常规方法,提出的方法的独特特征是高可靠性和成本效益(便宜的数量级)。还使用这种方法获得了带有金属 - 氧化物 - 氧化型电容器(Moscap)设备的UTC,并在不同的弯曲条件下进行了评估。在弯曲条件下观察到的稳定和均匀的性能(134 pf)表明,提出的技术对于在柔性印刷电路板上的高性能灵活UTC的整合起可能很有用,用于各种实际应用。
微泡 (MB) 广泛用于超声 (US) 成像和药物输送。由于表面张力,MB 通常呈球形。当加热到玻璃化转变温度以上时,聚合物基 MB 可以机械拉伸以获得各向异性形状,从而赋予它们独特的超声介导血脑屏障 (BBB) 渗透特性。本文显示,非球形 MB 可以用 BBB 特异性靶向配体进行表面改性,从而促进与脑血管的结合和声波渗透。主动靶向的棒状 MB 是通过对球形聚(丁基氰基丙烯酸酯)MB 进行 1D 拉伸,然后用抗转铁蛋白受体 (TfR) 抗体对其外壳进行功能化而生成的。使用超声和光学成像证明,无论是在体外还是体内,非球形抗 TfR-MB 都能比球形抗 TfR-MB 更有效地与 BBB 内皮结合。与 BBB 靶向球形 MB 相比,与 BBB 相关的各向异性 MB 产生更强的空化信号,并显著增强 BBB 渗透和模型药物的输送。这些发现证明了抗体修饰的非球形 MB 具有向大脑靶向和触发药物输送的潜力。
当你头皮发痒,你抓了抓,却发现头皮屑掉落,这有多糟糕?当别人注意到时,你会更尴尬。不用再担心,因为这款注入海洋成分的温和洗发水可以解决你的问题。它可以最大限度地减少头皮屑,并为头皮保湿。它可以每天用于所有发质。向头皮屑说再见!它含有 Carbopol ® * Fusion S-20 聚合物,这种成分以更可持续的方式提供与丙烯酸酯共聚物相同的性能。它是一种固有可生物降解的流变改性剂,可提供增稠和出色的稳定性。Sulfochem™* ES-2PSB-ULD 表面活性剂不仅提供出色的发泡性,而且 1,4-二氧六环含量低。Chembetaine™* C-PHP 表面活性剂是一种温和的表面活性剂,可增强泡沫质地和体积。QuickPearl™* PSB3 珠光剂可带来珍珠效果。 Merquat™* 2003PR 聚合物和 Merquat™* 100 聚合物的组合可提供出色的干湿调理效果,并具有颜色和热保护功能。Seascalp™* 生物海洋成分是一种生物技术活性成分,专门用于解决头皮屑问题并防止其复发,同时为头皮提供保湿。