©作者2024。Open Access本文是根据Creative Commons Attribution 4.0 International许可获得许可的,该许可允许以任何媒介或格式使用,共享,适应,分发和复制,只要您对原始作者和来源提供适当的信誉,请提供与创意共享许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://创建ivecommons。org/licen ses/by/4。0/。Creative Commons公共领域奉献豁免(http://创建ivecommons。Org/publi cdoma in/Zero/1。0/1。0/)适用于本文中提供的数据,除非在数据信用额度中另有说明。
有人提出,通过在OpenSAF中应用算法以将编码的初级保健数据相结合,以便向英国生物银行提供衍生的健康结果,可以通过OpenSAFLELIES中使用算法来满足英国生物银行的需求(以及其他同意同意的需求)。然而,尽管应该为其生成可再现的代码和分析初级保健数据的算法而受到赞扬,但有很多原因为什么它无法满足英国生物库的需求,尤其是它将无法提供与原始数据相互作用,构成新颖的问题并找到新的问题并找到新的分析方法的能力。我们的大型研究人员社区已经使用现有数据表明了它的价值。撇开缺乏可扩展性的方法(例如,将大约20个出版的出版物与内部团队撰写,而不是由内部团队撰写的,而不是仅2022年全球外部研究人员根据英国生物库发表的200,000篇论文),这些限制包括:
摘要:手性氮杂环丙烷是天然产物和各种重要靶分子中发现的重要结构基序。它们是合成手性胺的多功能构建块。虽然催化剂设计的进步使得对映选择性氮杂环丙烷活化烯烃的方法成为可能,但简单且丰富的烷基取代烯烃带来了重大挑战。在这项工作中,我们介绍了一种利用平面手性铑茚基催化剂促进未活化烯烃对映选择性氮杂环丙烷化的新方法。这种转化表现出显着程度的功能基团耐受性,并显示出优于活化烯烃的优异化学选择性,从而提供了多种对映体富集的高价值手性氮杂环丙烷。计算研究揭示了一种逐步氮杂环丙烷化机制,其中烯烃迁移插入起着核心作用。该过程形成了有张力的四元金属环,并作为整个反应中的对映体和速率决定步骤。
Na(100)Na(110)Na(111)NaCl(100)NaCl(100)NACL(100)NACL(111)CO -0.25 EV -0.26 EV -0.23 EV -0.23 EV -0.23 EV -0.17 EV -0.17 EV -0.42 EV -0.42 EV CO 2 -0.25 EV -0.19 EV -0.19 EV -0.19 EV -0.19 EV -0.19 EV -0.35 EEVE -0.35 EEVE EAVE -0.35 EE.-0.35 EE.-0.35 EE.-0.35 EE..25 EV -7.98 EV -7.90 EV -0.88 EV -8.96 EV DMC -0.57 EV -0.56 EV -0.56 EV -0.56 EV -0.48 EV -0.48 EV -0.48 EV -0.47 EV -1.22 EV -1.22 EV CH 3O(甲基) (1,2 -2-甲酸)-4.00 EV -3.74 EV -3.94 EV -0.60 EV -4.60 EV -4.4.66 EV C 2 H 3 O 3 O 3(甲酸甲酯)-4.65 EV -4.53 EV -4.53 EV -4.53 EV -0.61 EV -0.5.50 EV -53 (甲氧基甲盐)-2.46 EV -2.59 EV -2.38 EV -0.48 EV -0.48 EV -3.49 EV -3.49 EV C 3 H 6 O 2(1,2 -2 -propandaly)-3.90 EV -3.74 EV -3.74 EV -3.74 EV -3.94 EV -3.94 EV -0.0.0.0.60 EV -0.60 EV -0.60 EV -0.60 EV -0.60 EV C 4(1 4(1 4(1 4(1 4(1)) -8.14 EV -7.92 EV -7.81 EV -0.69 EV -9.24 EV C 4 H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H,H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H” .0.37 EV -0.50 EV C 3 H 6 O 1(1)(1 -2-2 -IL)-0.76 EV -0.66 EV -66 EV -66 EV -1.00 EV -0.49 EV -0.49 EV -0.49 EV -0.87 EV -0.87 EV C3 H 6 O 1(2)(2)(2 -propantaly -1 -1 -1 -1-yl) 51 EV -0.51 EV -0.51 EV -0.51 EV。 -2.84 EV PO(丙烷氧化物)-0.42 EV -0.43 EV -0.14 EV -0.51 EV -0.93 EV
摘要:本报告描述了非水性氧化还原流量电池的二氨基丙烷 - 苯噻硫氨酸杂化天主分解器的开发。分子是通过添加二氨基丙烷(DAC)取代基于苯噻嗪的氮,以快速和模块化的方式合成。将多功能的C – N耦合方案(可提供对不同衍生物的访问)与计算和结构 - 培训分析允许鉴定CATALYTE,该识别在0.64和1.00 V VS FC /FC +的电位上显示稳定的两电动循环,以及所有氧化液的溶解性以及所有氧化液(均为MIMM5M5 m5 m5 m)。该天主教徒被部署在高能量密度的两电子RFB中,在266小时的流细胞循环中以> 0.5 m的电子浓度表现出> 90%的容量保留。
摘要:开发用于吸附分离丙烯和丙烷的多孔固体仍然是一个重要且具有挑战性的研究方向。最先进的吸附剂材料通常会在吸附容量和选择性之间产生矛盾。在这里,我们报道了通过设计的孔隙扭曲在金属有机骨架中对丙烯和丙烷进行受控分离。HIAM-301 的扭曲孔结构成功排除了丙烷,从而在 298 K 和 1 bar 下同时实现了高选择性(>150)和大容量(~3.2 mmol/g)的丙烯。动态突破测量验证了丙烷和丙烯的优异分离。原位中子粉末衍射和非弹性中子散射揭示了 HIAM-301 中吸附丙烯分子的结合域以及主客体相互作用动力学。这项研究为丙烯和丙烷的吸附分离提出了新的基准。
b"http://campusexperience.unm.edu/resources/unm-event-request.html 查看活动规划指南,确定执行活动需要遵循哪些步骤。 召开规划会议。 分配任务、设定期望并确定截止日期。 安排后续会议可能会有所帮助,以便小组成员可以分享最新情况。 预留您的空间。 大多数校园空间可以提前一年预订。 活动日期确定后立即为大型活动预留空间。 如果您要举办小型活动(例如烘焙义卖),您可以在活动开始前 3-6 周预留空间。 申请许可证。 如果您的活动有大量人群、明火、丙烷、帐篷、现场烹饪、无人机、酒精、校外供应商、扩音器或其他不寻常的活动,您将填写环境健康和安全活动表格(https://ehs.unm.edu/special-events/special-events-request.html)并申请许可证。 联系 SAC 以获取许可证方面的帮助。"
1-溴丙烷(1-BP),也称为溴丙烷,是一种无色、易挥发的液体,具有刺激性气味。用作多种工业产品的合成剂。它被推广并用作破坏臭氧层的溶剂的替代品,特别是用于金属部件的气相脱脂、清洁印刷电路和粘合剂的配制。在蒸汽脱脂操作过程中,职业接触水平通常低于 20 ppm (100 mg/m 3 ),而在喷涂粘合剂过程中则可能远远超过 100 ppm (500 mg/m 3 )。在大鼠中,1-BP 在呼出的空气中大部分以原形排出。它还在肝脏中代谢为丙酸,并与谷胱甘肽结合后代谢为各种硫醇尿酸。这些代谢物与溴离子一起通过尿液排出体外。目前还没有关于 1-BP 对人类毒性作用的系统研究。然而,文献报道,在接触该病毒的工人中,有几例出现眼睛、喉咙和皮肤刺激以及神经毒性的情况,其中包括一例周围神经病变。在动物中,1-BP 对皮肤和眼睛有刺激性,并且在浓度通常高于 1000 ppm 的情况下,通过亚慢性吸入大鼠,对肝脏、中枢和周围神经系统、血液和雄性生殖系统产生影响但大约 200 或 300 ppm 才能产生某些效果。目前尚无关于 1-BP 的致癌性或其对发育影响的研究。然而,1-BP在大鼠体内的代谢中间体之一是环氧丙烷,在动物中是一种诱变剂和致癌剂。在一般环境中,该产品主要以气态形式存在于室外环境空气中,并在不到 2 周的时间内降解。它有助于对流层臭氧(光化学烟雾)的形成和全球变暖。其臭氧消耗潜力可能较低,但仍存在争议。1-BP 没有法定暴露限值。制造商建议的 8 小时标准为 3、10、25、50 或 100 ppm。根据所使用的测定方法,1-BP 的闪点存在模糊性,这使得有关该物质的运输、储存、处理和使用的任何通用建议都存在问题。在目前的知识水平下,推荐使用这种溶剂似乎还为时过早,主要是因为它的神经毒性和生殖毒性作用已经在动物身上记录下来,而且缺乏关于潜在致癌性和潜在毒性的数据。胚胎、胎儿和新生儿发育,以及由于其可燃性的不确定性。
1-溴丙烷(1-BP),也称为溴丙烷,是一种无色、易挥发的液体,具有刺激性气味。用作多种工业产品的合成剂。它被推广并用作破坏臭氧层的溶剂的替代品,特别是用于金属部件的气相脱脂、清洁印刷电路和粘合剂的配制。在蒸汽脱脂操作过程中,职业接触水平通常低于 20 ppm (100 mg/m 3 ),而在喷涂粘合剂过程中则可能远远超过 100 ppm (500 mg/m 3 )。在大鼠中,1-BP 在呼出的空气中大部分以原形排出。它还在肝脏中代谢为丙酸,并与谷胱甘肽结合后代谢为各种硫醇尿酸。这些代谢物与溴离子一起通过尿液排出体外。目前还没有关于 1-BP 对人类毒性作用的系统研究。然而,文献报道,在接触该病毒的工人中,有几例出现眼睛、喉咙和皮肤刺激以及神经毒性的情况,其中包括一例周围神经病变。在动物中,1-BP 对皮肤和眼睛有刺激性,并且在浓度通常高于 1000 ppm 的情况下,通过亚慢性吸入大鼠,对肝脏、中枢和周围神经系统、血液和雄性生殖系统产生影响但大约 200 或 300 ppm 才能产生某些效果。目前尚无关于 1-BP 的致癌性或其对发育影响的研究。然而,1-BP在大鼠体内的代谢中间体之一是环氧丙烷,在动物中是一种诱变剂和致癌剂。在一般环境中,该产品主要以气态形式存在于室外环境空气中,并在不到 2 周的时间内降解。它有助于对流层臭氧(光化学烟雾)的形成和全球变暖。其臭氧消耗潜力可能较低,但仍存在争议。1-BP 没有法定暴露限值。制造商建议的 8 小时标准为 3、10、25、50 或 100 ppm。根据所使用的测定方法,1-BP 的闪点存在模糊性,这使得有关该物质的运输、储存、处理和使用的任何通用建议都存在问题。就目前的知识水平而言,建议使用这种溶剂似乎为时过早,主要是因为已经在动物身上证实了这种溶剂的神经毒性和生殖毒性作用,而且缺乏有关致癌潜力和对胚胎的毒性潜力的数据,胎儿和新生儿的发育,以及其可燃性的不确定性。