由于缺乏胰岛素,酮症酸中毒(血液中酮体含量升高)几乎总是出现在 1 型糖尿病患者身上,但很少出现在 2 型糖尿病患者身上。酮症酸中毒的发生是因为胰岛素缺乏意味着葡萄糖无法进入细胞作为燃料。胰岛素是一种允许葡萄糖进入细胞的激素。相反,脂肪被分解成游离脂肪酸,这些脂肪酸经过β氧化变成乙酰辅酶 A,为克雷布斯循环(即 TCA 循环)提供能量。酮症酸中毒的一个症状是呼吸有丙酮味,
图1 Yarrowia脂溶性固体箭头中脂质代谢的概述:化学转换和运输反应,虚线箭头:多个化学转换步骤,虚线和箭头:代表N-限制后果。AMP,单磷酸腺苷; CIT,柠檬酸盐; DAG,二酰基甘油; DHAP,二羟基丙酮磷酸盐; F6P,果糖6-磷酸盐; FA,脂肪酸; FBP,果糖1,6-双磷酸;烟雾,富马酸; G3P,甘油3-磷酸盐; G6P,葡萄糖6-磷酸盐; GA3P,3-磷酸甘油醛; ICIT,异核酸; Imp,肌苷一磷酸; LPA,溶物磷脂酸;马尔,苹果; mal -coa,丙二酰辅酶A; NH4,铵; OAA,草乙酸; PA,磷脂酸; pyr,丙酮酸; suc,琥珀酸;标签,三乙二醇[可以在wileyonlinelibrary.com上查看颜色图]AMP,单磷酸腺苷; CIT,柠檬酸盐; DAG,二酰基甘油; DHAP,二羟基丙酮磷酸盐; F6P,果糖6-磷酸盐; FA,脂肪酸; FBP,果糖1,6-双磷酸;烟雾,富马酸; G3P,甘油3-磷酸盐; G6P,葡萄糖6-磷酸盐; GA3P,3-磷酸甘油醛; ICIT,异核酸; Imp,肌苷一磷酸; LPA,溶物磷脂酸;马尔,苹果; mal -coa,丙二酰辅酶A; NH4,铵; OAA,草乙酸; PA,磷脂酸; pyr,丙酮酸; suc,琥珀酸;标签,三乙二醇[可以在wileyonlinelibrary.com上查看颜色图]
预处理 粘合接头的强度和耐久性取决于对要粘合的表面进行适当的处理。至少,应使用良好的脱脂剂(如丙酮、异丙醇(用于塑料)或其他专有脱脂剂)清洁接头表面,以去除所有油、油脂和污垢痕迹。切勿使用低浓度酒精、汽油或油漆稀释剂。通过机械研磨或化学蚀刻(“酸洗”)脱脂表面可获得最坚固、最耐用的接头。研磨后应进行第二次脱脂处理。 Araldite ® 2015 结构胶粘剂以带混合器的筒装形式提供,可借助 Huntsman Advanced Materials 推荐的工具作为即用型胶粘剂涂抹。 胶粘剂的应用 可以手动或机器人将树脂/硬化剂混合物涂抹在预处理的干燥接头表面上。 Huntsman 的技术支持团队可协助用户选择合适的应用方法,并推荐各种制造和维修粘合剂分配设备的知名公司。厚度为 0.002 至 0.004 英寸(0.05 至 0.10 毫米)的粘合剂层通常会为接头提供最大的搭接剪切强度。Huntsman 强调,适当的粘合剂接头设计对于持久粘合也至关重要。一旦涂抹粘合剂,就应将接头组件组装并固定在固定位置。有关表面准备和预处理、粘合剂接头设计和双注射器分配系统的更多详细说明,请访问 www.araldite2000plus.com。设备维护在粘合剂残留物固化之前,应使用热水和肥皂清洁所有工具。清除固化残留物是一项困难且耗时的操作。如果使用丙酮等溶剂进行清洁,操作员应采取适当的预防措施,此外,还应避免皮肤和眼睛接触。达到最小剪切强度的固化时间
基于Zno纳米材料的气体传感器的高工作温度可能会缩短传感器的寿命并增加其功耗。在气体响应和温度方面,增强ZnO纳米材料的气体传感器的挥发性有机化合物(VOC)感应性能对于它们的实际应用至关重要。将贵金属装饰到纳米结构上是改善其感应特性的有效方法。在此,引入了水热合成的ZnO珊瑚色纳米板,并引入了PD纳米颗粒的装饰,以实现改善的VOC感应性能。研究了合成原始和PD E ZnO珊瑚样纳米板的形态,晶体结构,组成,原子结构以及气体传感特性。结果显示,基于PD E ZnO的传感器的原始ZnO传感器的最佳工作温度从450 C的最佳工作温度显着降低。通过用PD纳米颗粒的表面装饰,在350 C最佳工作温度下对丙酮的响应提高了三倍。PD E ZnO传感器的响应时间和恢复时间比原始ZnO传感器的速度快三倍。PD E ZnO传感器达到了17 ppt的理论检测极限,在350 C时达到3.5 E 2.5 e 2.5 ppm丙酮的灵敏度。传感器的瞬态稳定性在几个开/关开关从空气到气体的开关周期后,揭示了制造设备的有效可重复性。还讨论了多孔PD E ZnO珊瑚样纳米板传感器的合理机制。©2021作者。Elsevier B.V.的出版服务代表河内越南国立大学。这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nc-nd/4.0/)下的开放访问文章。
拜氏梭菌 (Clostridium beijerinckii) 是一种很有前途的丁醇工业生产微生物,但其丁醇产量低且缺乏高效的基因工程工具包。一些负责 Spo0A 磷酸化的组氨酸激酶 (HK) 已被证实是调控溶剂型梭菌 (如丙酮丁醇梭菌) 丁醇生物合成的重要功能组分,但尚未在拜氏梭菌中进行有关 HK 的研究。本研究通过序列比对,筛选出 6 个已注释但尚未鉴定的候选 HK 基因,这些基因与丙酮丁醇梭菌的基因具有部分同源性(不低于 30%)。利用基于 CRISPR-Cas9n 的基因组编辑技术删除这些 HK 基因的编码区。 cbei2073 和 cbei4484 的缺失导致丁醇生物合成发生显著变化,与野生型相比,丁醇产量分别增加了 40.8% 和 17.3% (13.8 g/L 和 11.5 g/L vs. 9.8 g/L)。观察到丁醇生产速率更快,丁醇生产率分别大幅提高了 40.0% 和 20.0%,表明这两个 HK 在调节 C. beijerinckii 细胞代谢中起重要作用。此外,两个 HKs 失活菌株的孢子形成频率分别降低了 96.9% 和 77.4%。与野生型相比,另外四个 HK 缺失突变菌株(包括 cbei2087、cbei2435、cbei4925 和 cbei1553)表现出的表型变化很小。本研究揭示了HKs在拜氏梭菌中孢子形成和溶剂生成中的作用,并提供了一种新的HKs工程化策略来提高代谢物的产量。本研究产生的高丁醇生产菌株在工业生物丁醇生产中具有巨大的潜力。
2.3.1. 安乃近 (NAP);安乃近、咖啡因 (NAP);安乃近、咖啡因、可待因 (NAP);安乃近、咖啡因、可待因、对乙酰氨基酚 (NAP);安乃近、咖啡因、可待因、对乙酰氨基酚、苯巴比妥 (NAP);安乃近、咖啡因、屈他维林 (NAP);安乃近、咖啡因、硫胺素 (NAP);安乃近、东莨菪碱 (NAP);安乃近、匹托芬酮 (NAP);安乃近、匹托芬酮、芬哌胺 (NAP);安乃近、匹托芬酮、芬匹维林 (NAP);安乃近、三丙酮胺 (NAP) – EMEA/H/A-107i/1537 ........................................... 16
关键词微生物,发酵,l-谷氨酸,谷氨酸微球菌]引入对L-谷氨酸的兴趣,这是大规模发酵产生的第一种氨基酸,这是由于对单钠L-氯丁胺作为一种增强风味剂的需求的增长而刺激的。我们对L-谷氨酸和其他Amono酸的微生物产生的大部分知识也归功于日本研究2。大多数L-谷氨酸产生的文献都是日本的。幸运的是,至少有一些以抽象的形式出现在英文中。已分离或诱导多种微生物,用于L-谷氨酸的产生4,5。我们目前的研究旨在检查不同突变微生物的效力,即谷氨酰胺AB 1,psendomonas deplivora ab 1,cirenlans ab 1,cirenlans ab 1,cerevisae cerevisae ab 1和spergillus niger ab 1和spergillus niger ab 1,生产L-果胶酸酸。使用的材料和方法微生物:不同的调节突变体微球菌AB 1,psendomonas deplivora ab 1,cirenlans ab 1,ceryvisae ceryvisae ab 1和aspergillus niger ab 1。基底盐培养基的组成:(i)细菌含有葡萄糖的基础盐培养基,10%;尿素,0.8%; K 2 HPO 4,0.1%; MGSO 4 .7H 2 O,0.025%;酵母提取物,0.02%; pH 7.0。(ii)酵母中的基底盐培养基:葡萄糖,10%;尿素,2%; K 2 HPO 4,0.1%; MGSO 4 .7H 2 O,0.025%;酵母提取物,0.02%; NACL,0.02%; CACL 2 .2H 2 O,0.02%; FESO 4 .7H 2 O,0.03%; ZnSO 4 .7H 2 O,0.002%; pH已调整为5.0。1色谱纸。1色谱纸。(iii)曲霉的基底盐培养基含有葡萄糖,10%;尿素,2%; K 2 HPO 4,0.06%; KH 2 PO 4,0.04%; MGSO 4 .7H 2 O,0.04%; NACL,0.02%; CACL 2 .2H 2 O,0.02%; FESO 4 .7H 2 O,0.03%; ZnSO 4 .7H 2 O,0.002%,将pH调节为5.0。氨基酸的分析:使用降纸色谱法用于检测培养基中的L-谷氨酸,并在Watman No.所使用的溶剂系统包括N-丁醇:乙酸:水(2:1:1)。通过在丙酮中用0.2%氮杂蛋白的溶液在悬浮液中用0.2%荷兰的溶液喷涂丙酮中的溶液在丙酮中可视化斑点。结果和讨论表1不同调节微生物的L-谷氨酸的积累。微生物(S)L-谷氨酸(mg/ml)1微球菌AB 1 0.7±0.03 mg/ml 2 pseudomonas AB 1 0.1±0.02 mg/ml AB 1 0.05±0.01 mg/ml值表示为平均值±SEM;其中n = 6。从表1中,很明显,在研究的不同微生物中,微球菌AB 1(图1)被证明是最适合L-谷氨酸产生的生物。
Piranha 溶液非常活跃,会放热,并且具有爆炸性。它很可能会变热,超过 100°C。小心处理!在制备 Piranha 溶液时,务必将过氧化物添加到酸中。H 2 O 2 应在工艺前立即添加,因为它会立即产生放热反应并释放气体(压力)。如果 H 2 O 2 浓度达到或超过 50%,则可能会发生爆炸。Piranha 溶液会与任何有机材料发生剧烈反应。避免与不相容的材料混合,例如酸、碱、有机溶剂(丙酮、异丙醇)或尼龙。在将所有基质放入 Piranha 溶液之前,务必确保已冲洗并干燥所有基质。仅使用干净的玻璃或 Pyrex 容器;Piranha 溶液与塑料不相容。
气体:煤气、空气、氢气、天然气、氮气、液化石油气、过氧化氢、烟气、甲烷、丁烷、氯气、混合气体等。液体:重油、石蜡、沥青、硫酸、食用油、残渣、丙酮、柴油、矿井水、洗涤剂、酱油、汽油、硅油、糖浆、溶剂、香水、海水、航空煤油、皂酮水、葡萄糖、油酸、盐水、糊状物、墨水、冷却液、乙二醇、矿物油、液体糖、盐酸、汽车漆、树脂、黄油、菜籽油、液氧、洗发水、牙膏、凝胶、燃料油、牛奶漂白剂、护发素、苏打水、添加剂、洗涤剂、碱、氨水、船用油、化学试剂、煤油、甘油、染料、水、硝酸、高沸点有机溶液、猪油、添加剂、酒精、油、乙烯、聚丙烯、甲苯等
每个电池在冰中冷却至少 1 小时;然后用丙酮冲洗后,用压缩空气小心地将其温度计套管吹干。接下来,将粉碎的固体二氧化碳倒入套管中,直到与水的水平相似;不断加满,直到冰套看起来大约 6 到 8 毫米厚。从这个阶段开始,不再添加任何 CO2,让电池中的 CO2 升华,直到冰盖的厚度相当均匀。然后将任何剩余的 CO2 倒出,并用冰水填充套管。然后将电池重新装在冰中,放置约 20 小时,然后通过将金属棒插入套管几秒钟来融化冰套和温度计套管之间的界面,以备使用。在开始任何测量之前,通过确保套管可以自由旋转来检查套管的自由度。