摘要:食品行业一直在寻找创新的方法,以确保消费者获得最高质量。新提案包括使用多碳酸酯(PCL),这是一种常用的生物聚合物,可在许多有机溶剂中溶于作用。PCL功能可以通过与其他聚合物和生物活性分子的混合物进行修改,以扩大其在食品行业中的应用。例如,包装和活性物质的发展是基于PCL的。本评论探讨了PCL在食品行业中的应用,涵盖了其作为可生物降解的活动包和封装代理的作用。评论强调了在食品行业中这种聚合物的潜力。
在真核细胞中,线粒体是内共生器官,与各种细胞过程有关,包括能量消耗,生物合成,信号转移和程序性细胞死亡。1显着,它们是创建三磷酸腺苷(ATP)的主要位置,腺苷三磷酸腺苷(ATP),包括所有生物的通用自由能载体,包括所有五个呼吸链络合物和所有三羧酸周期(TCA)酶。在细胞质和线粒体基质之间的代谢物交换对于执行这些代谢过程是必要的,这些代谢过程仅限于线粒体腔室并保留内部内稳态。电压依赖性阴离子通道允许微小的分子穿过外部线膜。然而,线粒体内膜(IMM)对分子和离子高度渗透,必须依靠特定的转运蛋白和通道来连接细胞质和线粒体的代谢。线粒体载体家族成员执行大部分运输步骤。2其他转运蛋白家族包括线粒体丙酮酸载体(MPC)。3 MPC是一种蛋白质复合物,存在于线粒体内膜中,并负责将丙酮酸从线粒体转运到线粒体基质中,其中丙酮酸转化为乙酰基氧乙烯酶A(乙酰辅酶A)。ace-tyl-coa进入TCA循环,并在其中进一步氧化。另外,线粒体中的丙酮酸也可以通过吡二酸酯羧化酶的羧化来参与糖异生,以产生草乙酸以补充TCA循环。7如上所述,除了被运输到线虫外,丙酮酸还可以通过细胞质中的乳酸脱氢酶(LDH)还原为乳酸。MPC是在1970年代4提出的,最初被称为BRP44L(脑蛋白44样)和BRP44(脑蛋白44)。它在2003年被鉴定在酵母中,并在2012年进一步鉴定在哺乳动物中。3,5,6 MPC是一个相对较小的杂物,由两个亚基组成,分别由12和14 kDa组成,分别为12和14 kDa。
抽象的丙酮酸羧化酶(PC)是一种非整酶酶,在包括糖生成,从头脂肪酸合成,氨基酸合成和葡萄糖诱导的胰岛素分泌的各种细胞代谢途径中起着至关重要的作用。在几种啮齿动物模型中一直与代谢综合征有关。在过去的十年中累积数据清楚地表明,PC表达的失调与人类的2型糖尿病有关,而小鼠模型中PC表达的靶向抑制降低了肥胖性和改善饮食诱导的2型糖尿病的胰岛素敏感性。最近的研究还表明,PC在几种癌症中强烈参与肿瘤发生,包括乳腺癌,非细胞肺癌,胶质母细胞瘤,肾癌和胆囊。对这些癌症的系统代谢组学分析,将丙酮酸羧化作为一种必不可少的代谢枢纽,将Oxaloacetate的下游代谢物的碳骨骼馈入各种细胞组件的生物合成,包括包括膜脂质,核苷酸,核苷酸,氨基酸对照和氨基酸对照。在几种癌症中抑制PC表达的抑制作用或下调显着损害了它们的生长体内和体内的生长,引起人们对PC作为抗癌靶标的关注。PC还通过与可以促进或阻断病毒感染的免疫监测相互作用来表现出月光功能。在某些致病细菌中,PC对于其毒力表型的感染,复制和维持至关重要。
摘要 肝糖异生增加被认为是导致非胰岛素依赖型糖尿病 (NIDDM) 患者空腹血糖升高的一个重要因素。磷酸烯醇式丙酮酸羧激酶 (GTP) (PEPCK;EC 4.1.1.32) 是一种糖异生调节酶。为了研究 PEPCK 基因表达在 NIDDM 发展中的作用,我们培育了转基因小鼠系,这些小鼠在其自身启动子的控制下表达 PEPCK 微基因。转基因小鼠血糖升高,血清胰岛素浓度较高。此外,还检测到肝糖原含量和肌肉葡萄糖转运蛋白 GLUT-4 基因表达的变化。PEPCK 基因的过度表达导致原代培养肝细胞中丙酮酸产生葡萄糖增加。当进行腹膜内葡萄糖耐量测试时,血糖水平高于正常小鼠的血糖水平。该动物模型显示肝脏葡萄糖生成率的原始改变可能导致胰岛素抵抗和 NIDDM。
引言急性心肌梗死 (AMI) 是全球范围内重大的公共健康问题、心力衰竭 (HF) 的主要原因和主要死亡原因 (1–3)。AMI 患者的标准治疗是直接经皮冠状动脉介入治疗 (PPCI),以再灌注并恢复缺血心肌的氧合血流 (4, 5)。然而,PPCI 却伴有再灌注损伤,这会加剧组织损伤并增加心肌细胞死亡,导致可挽救的心肌减少。据估计,再灌注损伤约占 AMI 后最终梗死的 50% (4, 6)。尽管经过数十年的研究,但尚无任何药物干预措施成功地转化为常规临床实践以减轻缺血-再灌注 (I/R) 损伤的有害影响 (7–9)。因此,减轻心肌 I/R 损伤仍然是心血管医学中尚未满足的需求,以防止缺血事件后发展为慢性 HF。I/R 的潜在机制复杂且多因素,但动物模型数据表明,缺血性心肌细胞内的线粒体功能障碍是关键因素(10-12)。在 I/R 损伤期间,线粒体功能对心肌细胞维持细胞能量、氧化还原和活力至关重要(13)。I/R 损伤引起的线粒体缺陷可导致线粒体介导的细胞凋亡,包括线粒体膜电位受损(ΔΨ)、钙超载和氧化应激(14, 15)。这被认为是由于 I/R 期间氧气和营养物质供应不连续而导致代谢失衡所致(16, 17)。了解代谢
丙酮酸羧化酶(PC)与多种疾病有关,包括2型糖尿病,癌症和细菌/病毒感染。但是,目前没有能够在体外和体内精确操纵PC活性的分子工具。本论文描述了1,3二取代的咪唑替替替翁的鉴定和表征,是金黄色葡萄球菌PC的新型有效,选择性和可渗透的变构抑制剂。基于动力学,结构和生物物理数据,假设这类抑制剂可以在PC上的非催化“ EXO结合”位点结合。据报道,此EXO结合位点对于催化至关重要,但以前尚未被认为是可药物的位置。本论文还表明,与未激活的PC相比,变构激活的PC对小分子抑制的敏感性明显较小。这一发现为针对人类PC的小分子抑制剂的发展提出了一个重要的新考虑。由于人类PC需要通过乙酰-COA激活催化活性,因此必须针对PC的变构激活形式进行未来的药物发现工作。最后,提供了体外证据,以反驳最近的说法,即两种天然产物Erianin和Anemoside B4是人类PC的抑制剂。本文提交了一个战略框架,以推动针对人类PC的药物发现。它概述了优化的筛选程序,并探讨了鉴定激活人PC抑制剂的可能途径。总体而言,这项工作大大提高了针对人PC的化学探针的开发,并最终有助于扩大用于研究PC在疾病中作用的可用工具包。
急性肾损伤 (AKI) 涉及肾功能的突然恶化,包括糖尿病在内的多种情况已被确定为危险因素。尽管 AKI 通常会导致死亡,但对其详细机制的了解不足阻碍了有效治疗方法的开发。在 AKI 期间,会发生缺血-再灌注 (IR) 损伤以及随后的活性氧 (ROS) 增加和炎症,并且被认为起着关键作用 [1]。线粒体会产生大量的 ROS,其功能障碍会导致多种代谢紊乱。线粒体是产生细胞能量的主要细胞器,而丙酮酸代谢是线粒体中的关键事件。丙酮酸由细胞质中的糖酵解产生,在有氧条件下,在线粒体中进一步代谢为三磷酸腺苷 (ATP)。在此过程中,丙酮酸转化为乙酰辅酶 A (CoA),后者可用于生成 ATP 或游离脂肪酸。丙酮酸脱氢酶 (PDH) 复合物介导丙酮酸转化为乙酰辅酶 A,该过程受到 ATP、乙酰辅酶 A 和 NADH(烟酰胺腺嘌呤二核苷酸 [NAD]+ 氢 [H])的变构抑制,以及丙酮酸脱氢酶激酶 (PDK1-4) 对 PDH 的磷酸化抑制。相反,腺苷单磷酸、CoA 和 NAD + 变构增加 PDH 活性,丙酮酸脱氢酶磷酸酶 (PDP1 和 PDP2) 对 PDH 的去磷酸化也增加 PDH 活性 [2,3]。韩国庆北国立大学 In-Kyu Lee 团队最近开展的研究表明,丙酮酸脱氢酶
丙酮酸激酶降低(PKD)是一种常染色体衰竭,是慢性非细胞性溶血性贫血的主要原因。pKD是由丙酮酸激酶,肝脏和红细胞(PKLR)基因中的突变引起的,该基因编码为红酮丙酮酸激酶蛋白(RPK)编码。rpk与红细胞(RBC)厌氧糖酵解的最后一步有关,负责维持正常的红细胞ATP水平。PKD的唯一治疗方法是同种异性造血茎和祖细胞(HSPC)移植,与显着的发病率和死亡率相关,尤其是PKD患者。在这里,我们通过PKLR内源性基因座的精确基因编辑来解决PKD的校正,以保持呈红生酶期间RPK酶的严格调节。我们合并了CRISPR-CAS9系统和供体的腺相关载体(RAAV)递送,以建立一个有效,安全且临床上适用的系统,以在人类造血祖先中RPK同工型的翻译起始位点敲击治疗序列。编辑的人类造血祖细胞在原发性和继发性免疫型小鼠中有效地重构的人伴有人伴有。源自编辑的PKD-HSPC的红细胞细胞恢复了正常的ATP水平,表明基因编辑后PKD红细胞生成中RPK功能的恢复。 我们的基因编辑策略可能代表了PKD患者RBC中RPK功能的终生疗法。红细胞细胞恢复了正常的ATP水平,表明基因编辑后PKD红细胞生成中RPK功能的恢复。我们的基因编辑策略可能代表了PKD患者RBC中RPK功能的终生疗法。
摘要:肥胖会影响人口的越来越多,是2型糖尿病和心血管疾病的危险因素。即使在没有高血压和冠状动脉疾病的情况下,2型糖尿病也可能导致心脏病称为糖尿病心肌病。减少了葡萄糖氧化,对能量产生的脂肪酸氧化的依赖增加,并且氧化应激被认为起因果作用。但是,这些变化影响心脏的代谢变化和机制的进展尚未建立。心脏丙酮酸脱氢酶(PDH)是葡萄糖氧化的中心调节部位,在喂养高饮食脂肪的小鼠中迅速抑制肥胖和糖尿病模型。 增加对脂肪酸氧化作用产生的依赖性又增强了线粒体促氧化剂的产生。 抑制PDH可能会引起代谢不足和氧化应激,并导致糖尿病心肌病。 我们讨论了文献中的证据,这些证据支持PDH抑制在肥胖和糖尿病人类以及啮齿动物模型中能量稳态和舒张功能损失中的作用。 最后,看似矛盾的发现突出了疾病的复杂性以及描述心脏代谢的渐进性变化的需求,对心肌结构和功能的影响以及融合的能力。心脏丙酮酸脱氢酶(PDH)是葡萄糖氧化的中心调节部位,在喂养高饮食脂肪的小鼠中迅速抑制肥胖和糖尿病模型。增加对脂肪酸氧化作用产生的依赖性又增强了线粒体促氧化剂的产生。抑制PDH可能会引起代谢不足和氧化应激,并导致糖尿病心肌病。我们讨论了文献中的证据,这些证据支持PDH抑制在肥胖和糖尿病人类以及啮齿动物模型中能量稳态和舒张功能损失中的作用。最后,看似矛盾的发现突出了疾病的复杂性以及描述心脏代谢的渐进性变化的需求,对心肌结构和功能的影响以及融合的能力。
非标准缩写和首字母缩写2-DG,2-脱氧葡萄糖; kg,α-ketoglutarate; ADP,腺苷二磷酸; AMP,单磷酸腺苷; ATP,三磷酸腺苷; Angii,血管紧张素II; Cr,肌酸; DHAP,二羟基丙酮磷酸盐;粮农组织,脂肪酸氧化; FBP,果糖双磷酸酯; G6P,6-磷酸葡萄糖; GSD,糖原储存疾病; KD,生酮饮食; Kegg,基因和基因组的京都百科全书; LF,低脂; MPC,线粒体丙酮酸载体; NAD+和NADH,氧化和还原烟酰胺腺嘌呤二核苷酸; NADP+和NADPH,氧化和减少烟酰胺腺嘌呤二核苷酸磷酸盐; PCR,磷酸盐; PEP,磷酸烯醇丙酮酸; P/M,丙酮酸/苹果酸; R5p,5磷酸核糖; RT-QPCR,逆转录定量PCR,SEDO7P,SEDOHEPTULOSE 7-磷酸盐; UDP,尿苷二磷酸盐; UHPLC,超高性能液相色谱