美国墨西哥湾沿岸非常适合捕获碳和存储。该地区是美国一些最活跃的工业走廊的所在地,并且位于许多合适的存储地点。除了得克萨斯州广泛的工业劳动力和现有基础设施外,墨西哥湾沿岸地区,尤其是德克萨斯州东南部,还具有独特的地质,为安全的理想条件创造了理想的条件,
支持主要惠及中低收入居民地区的社区发展计划。符合条件的地区由美国住房和城市发展部确定。东南地区计划将包括对 Hiestand 街区的额外推广,这是规划区内符合条件的社区行动战略 (CAS)。东南地区计划的其余部分侧重于指导土地使用和政策变化,而 CAS 建议则侧重于以下主题:街区能力建设、加强市政府与社区之间的伙伴关系和关系,以及小规模的物质改善,如艺术装置和交通平静化。市社区发展综合拨款 (CDBG) 委员会资金将在 CAS 地区实施符合条件的项目。潜在的项目构想将与 Hiestand 街区 CAS 地区的居民和利益相关者合作制定。
图2。Kulen气象站的气象条件(位于图1),在2022年4月10日至2023年4月10日的地面高度为2.2米的高度。(a) Daily mean air temperature ( T air , °C), (b) daily total precipitation ( P , mm), (c) daily mean global radiation ( Rg , W m -2 ), (d) daily mean relative humidity ( RH , %), (e) daily mean vapour pressure deficit ( VPD , kPa), and (f) daily mean wind speed ( WS , m s -1 ).所有地块中垂直虚线区域突出了雨季期
一个由各组织组成的互联经济发展生态系统对于区域竞争力至关重要,该生态系统能够协作、最大限度地减少重复并最大限度地提高服务交付效率。东南艾伯塔省拥有强大的经济发展组织网络,提供吸引投资、业务保留和扩展、创业和创新、宣传和劳动力发展等服务。该地区的六个市政合作伙伴正在共同探索区域经济发展的机会,寻求确定能够促进该地区繁荣和实现经济多元化的具有高影响力的举措。
佛罗里达州诺娜湖,2024年10月1日 - 自主共享移动解决方案的领先提供商Beep,Inc。今天宣布公开启动C.A.B.或密西西比州立大学(MSU)的校园自治巴士,标志着密西西比州和东南会议(SEC)的首次自治飞行员计划。于9月20日在MSU校园举行的剪彩仪式上庆祝,飞行员完成了数周的持续测试和验证,现在可供所有学生,MSU的教职员工和MSU的客人进行过境。C.A.B. 目前计划在今年年底之前运营,并将使MSU有机会评估如何在校园内使用自动运输系统来多样化其现有的运输资产车队。 MSU还在研究如何在农村环境中使用电力和共享的自动迁移率。 “ MSU是一个拥有良好运输网络的主要教育机构,作为创新过境的领导者,我们一直在寻找新的移动技术。 这就是为什么我们很高兴能亲自学习蜂鸣器的自动班车如何为我们的学生,教职员工和城市提供增强和扩展的运输选择。” “我们从该试点计划中收集的数据将有助于我们更好地了解骑手对自动运输的看法,以及这些解决方案如何为学生和教职员工提供便利的方式,以安全有效地到达目的地。” C.A.B. C.A.B. 计划操作C.A.B.目前计划在今年年底之前运营,并将使MSU有机会评估如何在校园内使用自动运输系统来多样化其现有的运输资产车队。MSU还在研究如何在农村环境中使用电力和共享的自动迁移率。“ MSU是一个拥有良好运输网络的主要教育机构,作为创新过境的领导者,我们一直在寻找新的移动技术。这就是为什么我们很高兴能亲自学习蜂鸣器的自动班车如何为我们的学生,教职员工和城市提供增强和扩展的运输选择。”“我们从该试点计划中收集的数据将有助于我们更好地了解骑手对自动运输的看法,以及这些解决方案如何为学生和教职员工提供便利的方式,以安全有效地到达目的地。” C.A.B.C.A.B.计划操作飞行员计划由两次电动蜂鸣式班车组成,一次沿着2.4英里的路线一次运行,其中包括关键目的地的五个不同的停靠站:旧的Main,Giles,Giles,College Time,Cotton District和Sanderson Center。
此资格要求 (RFQ) 是为位于北卡罗来纳州怀特维尔的东南社区学院设计和建造 OSBM 资助的 22,000,000 美元交通技术/STEM 设施提供调试服务。该项目将建造一个约 20,000 平方英尺的新设施。该设施将容纳现有的汽车技术计划,并将包括传统教室、办公空间、汽车升降舱和 CDL 实验室。新设施将建在主校区的北侧,占用目前未开发的土地。项目范围将包括道路通行、停车和公用设施扩展。此次选择的工作范围将包括为设施的设计、施工和占用阶段提供调试服务。调试代理应提供完整的建筑调试服务,以符合北卡罗来纳州 GS 143 – 135.35 至 .40(第 8C 条)规定的公共建筑可持续、节能建筑要求。调试代理将对业主承担合同义务,并将成为项目团队(包括 McMillan Pazdan Smith Architects 和 Barnhill Contracting“CMAR”)的成员。未来的调试代理应证明其在类似类型、规模和复杂程度的“整体建筑”调试项目中的经验。提案应包括对类似项目(至少 3 个)的全面描述,并提供业主参考信息。联系人 Ashley Butler 电话 910-788-6345 电子邮件 Ashley.butler@sccnc.edu 项目总预算 $22,000,000.00 资金来源 OSBM 管理 州政府指导拨款 批准 OC-25 # NCCCS#2719 发布日期 2024 年 7 月 24 日 截止日期 2024 年 8 月 22 日星期四下午 3:00 提交意向书和 SF-254:电子供应商门户 (eVP) 电子投标
海湾。第 2 部分:评估气候变化驱动的沿海灾害和社会经济影响的工具。J Mar Sci Eng 6(3)。https://doi.org/10.3390/jmse6030076 Erikson LH、Herdman L、Flahnerty C、Engelstad A、Pusuluri P、Barnard PL、Storlazzi CD、Beck M、Reguero B、Parker K (2022) 在预计的 CMIP6 风和海冰场的影响下,使用全球尺度数值波浪模型模拟的海浪时间序列数据:美国地质调查局数据发布。 https://doi.org/10.5066/P9KR0RFM Esch T、Heldens W、Hirner A、Keil M、Marconcini M、Roth A、Zeidler J、Dech S、Strano E(2017 年)在从太空绘制人类住区地图方面取得新突破——全球城市足迹。ISPRS J Photogramm Remote Sens 134:30–42。 https://doi.org/10.1016/j.isprsjprs.2017.10.012 Florczyk AJ、Corbane C、Ehrlich D、Freire S、Kemper T、Maffenini L、Melchiorri M、Pesaresi M、Politis P、Schiavina M、Sabo F、Zanchetta L(2019)GHSL 数据包 2019。在:欧盟出版物办公室,卷 JRC117104,7 月期。https://doi.org/10.2760/290498 Giardino A、Nederhoff K、Vousdoukas M(2018)小岛屿沿海灾害风险评估:评估气候变化和减灾措施对埃贝耶(马绍尔群岛)的影响。 Reg Environ Change 18(8):2237–2248。https://doi.org/10.1007/s10113-018-1353-3 Gonzalez VM、Nadal-Caraballo NC、Melby JA、Cialone MA(2019 年)概率风暴潮模型中不确定性的量化:文献综述。ERDC/CHL SR-19–1。密西西比州维克斯堡:美国陆军工程兵研究与发展中心。https://doi.org/10.21079/11681/32295 Gori A、Lin N、Xi D(2020 年)热带气旋复合洪水灾害评估:从调查驱动因素到量化极端水位。地球的未来 8(12)。 https://doi.org/10.1029/2020EF001660 Guo Y、Chang EKM、Xia X (2012) CMIP5 多模型集合投影全球变暖下的风暴轨道变化。J Geophys Res Atmos 117(D23)。https://doi.org/10.1029/2012JD018578 Guo H、John JG、Blanton C、McHugh C (2018) NOAA-GFDL GFDL-CM4 模型输出为 CMIP6 ScenarioMIP ssp585 准备。下载 20190906。地球系统网格联盟。 https://doi.org/10. 22033/ESGF/CMIP6.9268 Han Y, Zhang MZ, Xu Z, Guo W (2022) 评估 33 个 CMIP6 模型在模拟热带气旋大尺度环境场方面的表现。Clim Dyn 58(5–6):1683–1698。https://doi.org/ 10.1007/s00382-021-05986-4 Hauer ME (2019) 按年龄、性别和种族划分的美国各县人口预测,以控制共同的社会经济路径。科学数据 6:1–15。 https://doi.org/10.1038/sdata.2019.5 Hersbach H、Bell B、Berrisford P、Hirahara S、Horányi A、Muñoz-Sabater J、Nicolas J、Peubey C、Radu R、Schepers D、Simmons A、Soci C、Abdalla S、Abellan X、Balsamo G、Bechtold P、Biavati G、Bidlot J, Bonavita M 等人 (2020) ERA5 全局再分析。 QJR Meteorol 协会。 https://doi.org/10.1002/qj. 3803 Homer C,Dewitz J,Jin S,Xian G、Costello C、Danielson P、Gass L、Funk M、Wickham J、Stehman S、Auch R、Riitters K (2020) 来自 2016 年国家土地覆盖数据库的 2001-2016 年美国本土土地覆盖变化模式。ISPRS J Photogramm Remote Sens 162(二月):184-199。https://doi.org/10.1016/j.isprsjprs.2020.02.019 Huang W、Ye F、Zhang YJ、Park K、Du J、Moghimi S、Myers E、Péeri S、Calzada JR、Yu HC、Nunez K、Liu Z (2021) 飓风哈维期间加尔维斯顿湾周边极端洪灾的复合因素。海洋模型 158:101735。 https://doi.org/10.1016/j.ocemod.2020.101735 Huizinga J、de Moel H、Szewczyk W (2017) 全球洪水深度-损害函数。在:联合研究中心 (JRC)。https://doi.org/10.2760/16510 跨机构绩效评估工作组 (IPET) (2006) 新奥尔良和路易斯安那州东南部飓风防护系统绩效评估跨机构绩效评估工作组第 VIII 卷最终报告草案——工程和运营风险与可靠性分析。Jyoteeshkumar Reddy P、Sriram D、Gunthe SS、Balaji C (2021) 气候变化对季风后孟加拉湾强烈热带气旋的影响:一种伪全球变暖方法。 Clim Dyn 56(9–10):2855–2879。https://doi.org/10.1007/s00382-020-05618-3 Knapp KR、Kruk MC、Levinson DH、Diamond HJ、Neumann CJ(2010)国际气候管理最佳轨迹档案(IBTrACS)。Bull Am Meteor Soc 91(3):363–376。https://doi.org/ 10.1175/2009BAMS2755.1 Knutson TR、Sirutis JJ、Zhao M、Tuleya RE、Bender M、Vecchi GA、Villarini G、Chavas D(2015)根据 CMIP5/RCP4.5 情景的动态降尺度对 21 世纪末强烈热带气旋活动的全球预测。 J Clim 28(18):7203–7224。https://doi.org/10.1175/ JCLI-D-15-0129.1 Kron W(2005)洪水风险 = 危害 • 价值 • 脆弱性。Water Int 30(1):58–68。https://doi.org/10.Gunthe SS、Balaji C (2021) 气候变化对季风后孟加拉湾强烈热带气旋的影响:一种伪全球变暖方法。Clim Dyn 56(9–10):2855–2879。https://doi.org/10.1007/s00382-020-05618-3 Knapp KR、Kruk MC、Levinson DH、Diamond HJ、Neumann CJ (2010) 气候管理国际最佳轨迹档案 (IBTrACS)。Bull Am Meteor Soc 91(3):363–376。 https://doi.org/ 10.1175/2009BAMS2755.1 Knutson TR、Sirutis JJ、Zhao M、Tuleya RE、Bender M、Vecchi GA、Villarini G、Chavas D(2015 年)根据 CMIP5/RCP4.5 情景的动态降尺度对 21 世纪末强烈热带气旋活动的全球预测。J Clim 28(18):7203–7224。https://doi.org/10.1175/ JCLI-D-15-0129.1 Kron W(2005 年)洪水风险 = 危害 • 价值 • 脆弱性。Water Int 30(1):58–68。https://doi.org/10.Gunthe SS、Balaji C (2021) 气候变化对季风后孟加拉湾强烈热带气旋的影响:一种伪全球变暖方法。Clim Dyn 56(9–10):2855–2879。https://doi.org/10.1007/s00382-020-05618-3 Knapp KR、Kruk MC、Levinson DH、Diamond HJ、Neumann CJ (2010) 气候管理国际最佳轨迹档案 (IBTrACS)。Bull Am Meteor Soc 91(3):363–376。 https://doi.org/ 10.1175/2009BAMS2755.1 Knutson TR、Sirutis JJ、Zhao M、Tuleya RE、Bender M、Vecchi GA、Villarini G、Chavas D(2015 年)根据 CMIP5/RCP4.5 情景的动态降尺度对 21 世纪末强烈热带气旋活动的全球预测。J Clim 28(18):7203–7224。https://doi.org/10.1175/ JCLI-D-15-0129.1 Kron W(2005 年)洪水风险 = 危害 • 价值 • 脆弱性。Water Int 30(1):58–68。https://doi.org/10.
全国各地的大多数电台都在平均降雨量以上的降雨量高于平均水平,除了裂谷谷中央山谷(Nakuru),位于裂谷(Nyahururu)以东的高地(Nyahururu),东南低地(VOI),高地(VOI),高地的高地,位于Rift Valley(Kitale)以西的高地(Kitale)和Northwest(Lodwar)(LODWAR)接近平均降雨。季节性降雨的发作是在10月的第三到第四周,除了在沿海和东南低地的几个地区,在11月的第一周发病,裂谷谷,盆地湖,中部和南方裂谷的部分地区的高地从9月开始降雨。10月和11月的分布良好,十二月差。季节的特征是沿海地区,东南低地,裂谷东部的高地和肯尼亚东北部的严重风暴。
南部公司服务(SOCO)是南部公司平衡机构和东南部电力管理局(SEPA)平衡机构的RC,以及以下传输所有者:乔治亚州传输公司(GTC),乔治亚州传输公司(GTC),乔治亚市市政电动机,乔治亚州乔治市(MEA),南方电力公司(SEPC),APA(SEPA),SEPA,SEPA,SEPA,SEPA,SEPA,SEPA) Power(MPC)和佐治亚力量(GPC)。东南RC区域由NERC注册表中列出的平衡当局的计量界限内的传输和发电设施组成,并在东南可靠性协调员可靠性计划中引用。东南RC已与邻近的RC达成协议,以促进满足可靠性协调员的NERC要求所需的协调和通信。
- 出于此目的,东南亚包括文莱·达鲁萨拉姆(Brunei Darussalam),柬埔寨,印度尼西亚,老挝,马来西亚,缅甸,缅甸,菲律宾,新加坡,泰国,泰国,越南和东帝汶。- 研究应至少分析过去10年的趋势。- 它应该既应提供东南亚的回报,遣返和恢复过程的定量概述,并重点介绍至少10个值得注意的案例,最好是来自不同国家的案例。- 研究必须清楚地引用所有数据源和参考,包括具有相关链接的书目。