Masanori Tsukuda *,Li Guan *,Kazuha Watanabe *,Haruyuki Yamaguchi†,Kenshi Takao†,Ichiro Omura *电子邮件:tsukuda@life.kyutech.kyutech.acutech.ac.ac.ac.ac.ac.ac.ac.ac.ac.jp * kyushu日本福库卡†田芝三菱电动工业系统公司(TMEIC),1东芝 - 乔,富丘 - 福,东京,东京183-8511,日本摘要 - 根据社会中电力电子系统在社会上的重要性,Power Semiconductor设备的可靠性问题构成了Power Semiconductor设备的可用性问题。另一方面,由于电源设备的生命周期与使用的生产批量或条件很大,因此基于较高可用性的常规间隔维护可提高运行成本。电源半导体设备的基于条件的维护(CBM)将是电力电子系统维护的可用性和成本的有前途解决方案。在这项研究中,已经证明了高信号分辨率监测系统板。系统为开关设备和二极管的实时V-I曲线使用案例温度监视,并且数据存储在板内存中,并且可以在线监视。将板安装在守门驾驶员板上,该板板从栅极驾驶员板上提供电源,并在商业60kVA逆变器上演示。
1.用途 TOSCAN-D3000C是在东芝先进、成熟的配电自动化系统技术基础上,结合我国城市配电网系统特点,开发的一种完整、实用的配电自动化系统。TOSCAN-D3000C技术先进、功能成熟、可靠性高,适用于各种配电网系统。2.主要功能 � 配电网监控(SCADA) � 配电网设备管理 � 在线维护功能 � 在线仿真功能 � 与其他系统接口 � 配电故障处理及负荷决策转移 � 实时配电GIS � 报表系统 � 高级分析功能 3.主要特点 � 开放、分布式系统 系统基于开放、分布式结构,采用开放的LAN、WAN通讯控制协议,网络分布在UNIX工作站上处理客户机和服务器。� 系统采用主备方式,可靠性高 系统的服务器与工作站采用主备方式。组成系统的设备(TCM、TCR、RTU等)采用工业微处理器,可靠性高。� 系统结构良好,扩展方便 系统扩展方便,可根据用户要求增设工作站、TCM、TCR、RTU、PVS等。� 实时配电GIS
科学委员会 Don Andrews,CINDE,加拿大 Prof.博士。 Krishnan Balasubramanian,印度理工学院马德拉斯教授博士。 Younho Cho,韩国釜山国立大学教授Ramon Salvador Fernandez Orozco,Fercon Group,墨西哥 Alejandro Garcia,CNEA,阿根廷 Prof.博士。 Christian Große 博士,德国慕尼黑工业大学Daniel Kanzler,NDT 应用验证,德国教授博士。 Roman Maev,温莎大学,加拿大 Rafael Martínez-Oña,AEND,西班牙 Prof.博士。 Norbert Meyendorf 博士,美国代顿大学Makoto Ochiai 教授,日本东芝和 JSNDI。博士。 Serge Dos Santos,法国卢瓦尔河谷 INSA 中心 Prof.博士。 Ripi Singh,Inspiring Next,美国和印度教授博士。 Robert A. Smith,英国布里斯托大学教授博士。 Vladimir Syasko,RSNTTD,俄罗斯 Prof.博士。 Bernd Waleske 博士,Fraunhofer IZFP,德国Johannes Vrana 博士,Vrana GmbH,德国 Pranay Wadyalkar,LMATS,澳大利亚Casper Wassink,Eddyfi,荷兰 Prof.博士。高晓蓉,西南交通大学,中国
东芝空调里程碑:1961 年世界第一台分体式空调。1968 年日本第一台旋转压缩机。1978 年世界第一台微处理器控制空调。1980 年世界第一台变频定制空调。1981 年世界第一台家用变频房间空调。1988 年世界第一台双旋转压缩机。1993 年世界第一台数字双旋转空调和压缩机。1998 年日本第一台基于 R410A(环保)无臭氧消耗制冷剂的家用空调。1999 推出采用环保、不消耗臭氧层制冷剂的分体式空调。2000 首个可接入互联网的空调控制系统。2001 推出全球首款采用 R410a(环保)不消耗臭氧层制冷剂的轻型商用空调。2003 推出配备室内空气净化系统的高效分体式空调,并进入欧洲市场。2011 推出全球首款语音控制空调,进入日本市场。2018 在东南亚市场推出 Super Modular Multi System-7。2019 推出新加坡首款 5-tick R32 低全球变暖潜能值变频多分体式空调。
有争议的行为 1 63 Moons Technologies Ltd 2 Allied Universal Holdco LLC / Allied Universal Finance Corp 3 Allied Universal Holdco LLC/Allied Universal Finance Corp/Atlas Luxco 4 Sarl 4 中国北方稀土集团高科技股份有限公司 5 中国石油化工集团公司 6 中石油资本有限公司 7 Eskom Holdings SOC Ltd 8 G4S Ltd 9 杭州海康威视数字技术股份有限公司 10 内蒙古包头钢联股份有限公司 11 韩国电力公司 12 中国冶金科工股份有限公司 13 MMC Norilsk Nickel PJSC 14 Mumias Sugar Co Ltd 15 核损害赔偿和退役协助公司 16 石油天然气有限公司 17 中国石油天然气股份有限公司 18 委内瑞拉石油公司 19 PPTEP 20 PTT 石油与零售 21 PTT PCL 22 PTT 财务中心有限公司 23 中石化工程建设 24中石化冠德控股有限公司 25 中石化石油服务公司 26 东京电力控股公司 27 东芝公司 28 Unitech Ltd 29 Wirecard AG 30 新疆中泰化工有限公司
这是希望采用SBS规格的当事方的专利许可协议。本协议中使用的:·“启动子”是台式,杜拉克尔,能量器,英特尔,线性技术,马克西姆,三菱电气,国家半导体,东芝电池,瓦尔塔。·“采用者”是本协议末尾指定的实体。·“采用者”是执行本协议相同同行并将其交付给发起人的任何其他实体。·“会员”是一个直接或间接控制,由另一个实体控制或在共同控制的实体,只要存在这种控制。“控制”是指实体中超过50%的投票股票或权益的利益所有权。·“规格”是一组名为“智能电池系统规格”的规格,修订版1.0,由发起人撰写和发布,日期为1996年9月5日或之前,以及以下许可部分中所述的任何更新。·“必要的索赔”是指由一方拥有或控制的专利或专利申请的索赔,必须侵权,以制造完全符合当时当前规格的产品,该产品不会侵犯,而是符合规格,并且在不侵权的情况下没有可靠的方式符合规定。“必要的索赔”不包括与半导体制造技术有关的任何索赔,这些主张与规格中的界面构建产品的索赔无需违反此类索赔(即使在相同的专利索赔中),或者如果有执照,则需要释放律师的律师来支付持有律师的第三份第三部分。
1 IBM 9477 4% 2 三星电子 8735 9% 3 佳能 4102 15% 4 英特尔 3680 8% 5 微软 3144 32% 6 通用电气 3110 19% 7 华为 2938 33% 8 联合技术公司 2847 31% 9 LG 电子 2810 13% 10 丰田 2705 6% 11 索尼 2675 24% 12 Alphabet 2621 0% 13 福特 2519 17% 14 苹果 2512 15% 15 亚马逊 2504 18% 16 戴尔 2482 18% 17 高通 2376 0% 18 台积电 2352 -6% 19 京东方 2190 33% 20松下 2033 8% 21 西门子 1684 18% 22 爱立信 1613 17% 23 现代 1561 1% 24 日立 1546 18% 25 东芝 1495 -11% 26 强生 1474 44% 27 AT&T 1455 14% 28 美敦力 1446 10% 29 波音 1433 14% 30 通用 1404 17% 31 富士 1375 11% 32 精工爱普生 1346 5% 33 三菱电机 1333 12% 34 Facebook 1317 78% 35 霍尼韦尔 1295 13% 36 富士通 1282 -1% 37 美光1276 37% 38 罗伯特·博世 1272 -2% 39 电装 1218 5% 40 荷兰皇家飞利浦公司 1194 -10% 41 哈里伯顿 1112 25% 42 本田 1104 15% 43 京瓷 1085 2% 44 思科 1049 21% 45 NEC 1011 22% 46 理光 994 -6% 47 惠普公司 959 31% 48 村田制作所 933 25% 49 诺基亚 905 1% 50 德州仪器 902 13%
简介在2017年早些时候,我们在Uthaim线程中讨论了当前传送带放大器如何也可以用作IV转换器[1]。Uthaim利用了东芝JFET输入对,偏向于8mA。这些JFET当然很难获得。自然的问题是,我们如何用BJT替换JFET。偶然地遇到了Toshiyuki Beppu [2,2a]的1999年跨阻力IV电路。虽然这本质上是一个OPAMP IV电路,但输入阶段使用电流镜的原理显示了互补BJT对的简单偏置电路。也有John Broskie [2B]在2012年发表的类似巡回赛。而不是根据BEPPU使用第二电流放大阶段,然后用NFB关闭环路,而是只能将Uthaim的其余部分用于IV转换,包括输出缓冲区。当然,IV转换器不需要像Uthaim中的强大输出缓冲区。一个简单的A类BJT发射极追随者足以驱动下游阶段的典型载荷。整个电路由不超过3对互补电流镜,还有10个电阻组成。在Internet上进行了一些进一步的搜索,揭示了与上述[3,4]的非常相似的电路。实际上,我们在2011年也发表了类似的内容[5]。正如Jan Didden所说,您可以将其视为开放循环和A类简化的AD844(或平行的8倍)。那么,为什么现在要恢复呢?当时,JFET含量丰富,几乎没有HFE的单片双BJT可供选择(2SC3381BL / 2SA1349BL)。今天的情况是完全逆转的,并且像Nexen这样的SMD组件建立小型IV模块的想法相当吸引人[6]。Rutgers的确报告了相对较差(模拟)的性能,即使在低输出水平为0.25V的情况下,H3也为0.04%。尽管他选择的晶体管具有很低的电容,但HFE也很低(〜80)。通过选择高HFE(〜400)的Toshiba SMD低噪声双晶体管,我们的模拟
智能电池系统(S.B.S.)规格采用者协议这是希望采用SBS规格的当事方的专利许可协议。本协议中使用的:·“启动子”是台式,杜拉克尔,能量器,英特尔,线性技术,马克西姆,三菱电气,国家半导体,东芝电池,瓦尔塔。·“采用者”是本协议末尾指定的实体。·“采用者”是执行本协议相同同行并将其交付给发起人的任何其他实体。·“会员”是一个直接或间接控制,由另一个实体控制或在共同控制的实体,只要存在这种控制。“控制”是指实体中超过50%的投票股票或权益的利益所有权。·“规格”是一组名为“智能电池系统规格”的规格,修订版1.0,由发起人撰写和发布,日期为1996年9月5日或之前,以及以下许可部分中所述的任何更新。·“必要的索赔”是指由一方拥有或控制的专利或专利申请的索赔,必须侵权,以制造完全符合当时当前规格的产品,该产品不会侵犯,而是符合规格,并且在不侵权的情况下没有可靠的方式符合规定。当采用者的授权代表签署本协议并在下面的地址交付发起人时,本协议将具有法律约束力。许可证:•许可授予。“必要的索赔”不包括与半导体制造技术有关的任何索赔,这些主张与规格中的界面构建产品的索赔无需违反此类索赔(即使在相同的专利索赔中),或者如果有执照,则需要释放律师的律师来支付持有律师的第三份第三部分。采用者后期执行本协议或促进者对规范的最终确定,采用者在此向发起人和采用者授予了促进者,并授予促进者,特此向采用者授予采用者,采用者,无限制的,不可转让的,不可转让的,不可公开的,不可公开的,可根据其在全球范围内宣布,销售,销售,销售,进出,进出,进出,进出,进出,进出的产品;前提是该许可不得扩展到不需要遵守规范或存在可行的,不介绍替代方案的产品的功能。
[介绍]近年来,支持麻痹肢体运动的脑机界面的干预一直在吸引注意作为促进偏瘫患者的功能恢复的方法,在运动图像(MI)中使用脑活动(MI)作为触发因素。但是,目前尚不清楚如何改善MI期间的大脑活动和清晰度。因此,使用功能磁共振图像(fMRI)验证了这项研究,以阐明增强MI清晰度的干预措施。 [方法]包括两个健康的男性(平均25.0±2.8岁)。使用MRI机器(1.5t,东芝),在每次干预之前和之后以及在四个干预条件(实际运动,被动运动,感知和控制)之前拍摄脑图像。 MI任务是确定右手腕关节中棕榈背屈的MI。确定实际运动条件是自动化的,并由检查员执行被动运动条件。在感知状态下,运动范围分为五个阶段,审查员被动地移动以找到对该位置的心理反应。控制条件应与其他条件同时休息。此外,在MI任务之后,我们通过使用视觉模拟量表(VAS)获得了响应,以阐明MI的清晰度。在不同的日期测量每个条件,设置了7天或更长时间的间隔。 MI和干预前后的干预措施进行了五次休息和任务,每次24秒。使用软件SPM进行分析,并根据任务和休息之间的差异确定大脑活动位点。这项研究是在我们医院伦理委员会的批准下进行的,并得到了足够的解释和同意。成像是在医学放射科医生的管理下进行的。 [结果]在干预过程中,与运动相关区域的显着激活在实际运动条件,感知条件和被动运动条件下的顺序广泛。干预前后MI期间的大脑活动没有显着差异。 VA的平均增加率为245.3%,被动运动条件为56.4%,感知状况为117.4%,对照条件为11.7%。 [讨论]自动锻炼过程中干预和干预后的大脑活动的增加,表明进行实际运动对MI有效。但是,据推测,感知状况可能对运动难度的患者有益。