虽然能源信息管理局(EIA)估计,贝斯运营能力的90%使用了基于锂离子的电池,FEMA已确定对消防员和第一反应者提出了独特的挑战,因为在大型Bess设施中,“在大型BESS设施中,“一个lithium cell的失败可以casacade casacade将数百个单独的单元包含在内。。 热易燃气体会导致爆炸,或者很难扑灭火灾”;虽然能源信息管理局(EIA)估计,贝斯运营能力的90%使用了基于锂离子的电池,FEMA已确定对消防员和第一反应者提出了独特的挑战,因为在大型Bess设施中,“在大型BESS设施中,“一个lithium cell的失败可以casacade casacade将数百个单独的单元包含在内。热易燃气体会导致爆炸,或者很难扑灭火灾”;
产品可能具有或可能具有危险性。买方应从亨斯迈获取材料安全数据表和技术数据表,其中包含有关产品危害和毒性的详细信息,以及产品的正确运输、处理和储存程序,并应遵守与产品的处理、使用、储存、分销和处置以及接触有关的所有适用政府法律、法规和标准。买方还应采取一切必要措施,充分告知、警告并让可能处理或接触产品的员工、代理商、直接和间接客户和承包商了解与产品有关的所有危害和正确安全处理、使用、储存、运输和处置及接触产品的程序,以及可能处理、运输或储存产品的容器或设备。
摘要:同轴丝材激光金属沉积是一种多功能、高效的增材工艺,可在复杂结构的制造中实现高沉积速率。本文研究了三光束同轴丝材系统,特别关注了沉积高度和激光散焦对所得珠子几何形状的影响。随着沉积间隔距离的变化,工件照明比例也会发生变化,该比例描述了直接进入原料丝材和基材的能量比。在不同的散焦水平和沉积速率下沉积单个钛珠,并测量和分析珠子的纵横比。在实验设置中,发现散焦水平和沉积速率对所得珠子的纵横比有显著影响。随着离光束会聚平面的散焦水平增加,光斑尺寸增加,沉积轨道更宽更平。工艺参数可用于将沉积材料调整到所需的纵横比。在同轴丝材沉积中,散焦为丝材和基材之间的热量分布提供了一种调节机制,对所得沉积物有重要影响。
摘要:本研究调查了原料丝(此处称为热丝)的电阻预热对双相不锈钢激光定向能量沉积稳定性的影响。沉积过程中在线获取的数据以及金相研究揭示了工艺特性及其稳定性窗口。在线数据(例如预热电路中的电信号和从工艺交互区侧视捕获的图像)提供了有关熔融丝和熔池之间金属转移的见解。结果表明,工艺特性(如激光丝和丝熔池相互作用)随丝预热水平而变化。此外,应用两个独立的能源(激光束和电能)可以微调热输入并增加穿透深度,而对焊珠的高度和宽度影响很小。这可以提高工艺稳定性并消除未熔合缺陷。在热丝电路中测量的电信号指示工艺稳定性,因此电阻预热可用于工艺监控。结论是电阻预热为控制激光导向能量沉积的稳定性和热输入提供了额外的手段。
长期/短期银行信贷 65.00 CARE BBB+;稳定/CARE A2 重申 短期银行信贷 0.22 CARE A2 重申 附件 1 中的工具/信贷详情。 理由和关键评级驱动因素 重申对 Hester Biosciences Limited (HBL) 银行信贷的评级,继续得益于经验丰富的发起人、长期且成熟的运营记录、在禽类疫苗行业的强势地位、多样化的产品组合(越来越关注动物保健产品)及其广泛的营销和分销网络。评级继续考虑其舒适的资本结构、适中的债务覆盖率指标和充足的流动性。然而,评级优势受到其适中的运营规模和盈利能力、由于固有的高库存要求和在受监管的疫苗行业的存在而导致的大量营运资本需求的限制。评级还考虑了回报指标的适度,因为过去几年进行了大量的资本支出,但尚未扩大规模。评级敏感性:可能导致评级行动的因素
• AM = 增材制造 • DED = 定向能量沉积 • DfAM = 增材制造设计 • PBF = 粉末床熔合 • LP-DED = 激光粉末 DED • L-PBF = 激光粉末床熔合 • EB-PBF = 电子束粉末床熔合 • LW-DED = 激光丝 DED • AW-DED = 电弧丝 DED • EB-DED = 电子束 DED • AFSD = 增材搅拌摩擦沉积 • UAM = 超声波增材制造
• AM = 增材制造 • DED = 定向能量沉积 • DfAM = 增材制造设计 • PBF = 粉末床熔合 • LP-DED = 激光粉末 DED • L-PBF = 激光粉末床熔合 • EB-PBF = 电子束粉末床熔合 • LW-DED = 激光丝 DED • AW-DED = 电弧丝 DED • EB-DED = 电子束 DED • AFSD = 增材搅拌摩擦沉积 • UAM = 超声波增材制造