简介国家技术研究院(NIT Silchar)丝毫邀请您参与并庆祝可再生能源系统近期趋势的研讨会。这是为了提高能量增强,能源存储,状况监测和预防性维护方面的理论和实践的发展。我们有一群世界知名的研究人员和可再生能源系统领域的专家,他们将介绍有关当前可再生能源系统研究的想法。我们想创建一个论坛,以交换与可再生能源系统领域的最新出色发展有关的信息。我们邀请您在我们的一周计划中与研究人员和专家见面并交换您的想法。关于NIT国家理工学院NIT国家理工学院(NIT)Silchar,《 NIT法案》的国家重要性研究所于1967年成立为阿萨姆邦的区域工程学院(REC)SILCHAR。在2002年,它被升级为Rec的NIT状态。nit Silchar坐落在巴拉克河的河岸和一个庞大的校园中,占地600英亩,占地600英亩。校园有许多美丽的湖泊,周围环绕着小丘。NIT Silchar是一个完全住宅机构。
摘要 - 数字医疗保健的新兴领域揭示了一种新颖的诊断工具:一款用于早期发现心脏病的数字听诊器,如本研究中所阐明。通过利用Phonocartiography的细微功能,该设备捕获了错综复杂的心脏声音,随后通过先进的机器学习算法处理。传统的听诊器虽然必不可少,但可能会错过微妙的异常 - 通过精心分析Phonocartiographic数据来解决这种数字对应物的问题,以表明心脏异常的丝毫偏差。随着数字听诊器深入研究听觉提示,机器学习组件辨别出人类审计师通常无法察觉的模式和不规则性。这些数字声学和计算分析的汇合不仅增强了早期心脏病诊断的准确性,而且还促进了这些数据的档案,从而实现了对心脏健康的持续纵向评估。最初涉足现实世界申请的企业登记了令人鼓舞的精确率,巩固了其作为先发制人心脏护理中宝贵的资产的潜力。通过这项创新,我们站在心脏病的诊断方式上的范式转移的风口浪尖上,迈向及时干预措施并改善患者的结果。
俄罗斯无端入侵乌克兰已进入第三个月,战斗却没有丝毫停歇的迹象。然而,俄罗斯仍在遭受大量人员伤亡和物资损失,而这些损失都无法在短时间内弥补。即使是大型军队也无法无限期地承受这种惩罚,因此冲突的激烈程度终究会有所减弱,但很难知道具体时间。数千人丧生——当平民伤亡数字公布时,可能达到数万人——这一切都是因为普京总统及其随行人员的一系列令人震惊的误判。他们显然希望乌克兰根本不会战斗,或者至少在几天后就放弃。这种自欺欺人的情况在独裁者和独裁者中很常见,他们身边通常都是走狗和马屁精,他们太害怕向主人说实话。历史上不乏这样的例子。伊拉克独裁者萨达姆·侯赛因似乎认为他的国家不会在 2003 年受到攻击,因为伊拉克拥有大量毒气等大规模杀伤性武器。这些武器在 1990 年灾难性的入侵科威特之后都被销毁了,但没有人有勇气告诉他,这导致了一种不合理的安全感。同时,他的军事顾问表示相信武装部队足够强大,可以击退任何入侵,而不是冒着生命危险说出令人不快的事实,即
丝毫不受其平坦的情感状态所阐明的程度。Star Tr Ek的Spock尽管缺乏情感,但仍将完全满足男士的要求。单调,无色,但哦,哦,如此有效 - “目的的动机”和“信仰的认知状态”足以使整天的fic tional spock非常轻松。,它们是许多现有计算机程序的完善的FEA TU。在1996年冠军赛的第一场比赛中,IBM的电脑深蓝色击败世界国际象棋冠军加里·卡斯帕罗夫(Garry Kasparov)时,它通过发现和执行精美的时机,一种枯萎的进攻来做到这一点,这在追溯到Kasparov和Hershtlers的过程中都太明显了。这是深蓝色对这些目的的敏感性,并且是认识和利用卡斯帕罗夫(Kasparov)游戏中的微妙缺陷的认知能力,这是深蓝色的成功。Murray Campbell,Feng-Hsiung Hsu和Deep Blue的Oth Er设计师没有击败Kasparov;深蓝色做到了。c am p-p bell和hsu都没有发现动作的获胜顺序。深蓝色做到了。在某一时刻,当卡斯帕罗夫(Kasparov)对《深蓝色国王》(Deep Blu e)的国王进行了猛烈的攻击时,除了深蓝色,没有人知道它有时间和安全性,需要击败卡斯帕罗夫(Kasparov)的讨厌的典当,而卡斯帕罗夫(Kasparov)的典当是在Acti上脱颖而出,但几乎是无形的。坎贝尔(Campbell)就像人类的祖先观看比赛一样,永远不会敢考虑在压力下如此平静的MOPP运作。深蓝色,像许多其他配备人工智能的计算机一样
我们非常高兴地代表您代表亚洲PGPR协会及其在印度9个亚洲PGPR印度分会的可持续农业章节,即“可持续农业的综合方法:机会与挑战”,计划于2024年7月29日至30日在Bharathiar coimimbatore举行。本次会议是与亚洲PGPR可持续农业协会合作组织的,由各种教育,工业,企业家和媒体合作伙伴支持。由于PGPR相关的技术目前正在经历急剧增长,因此对PGPR和农作物之间的相互作用的研究已经变得至关重要,被认为对可持续和有机农业的未来起着关键作用。pgpr在可持续农业中表现出重要的作用,可以通过大量降低合成肥料的大量降低,而农药的使用大大减少是一个巨大的挑战。本次会议向生物繁殖者,生物杀菌剂,生物农药,生物刺激剂,生物草药,生物抑制剂,生物氯性药物等越来越重要。,确定联盟中新兴的技术。因此,我们丝毫欢迎您加入我们,并见证农业在使用PGPR策略中使用PGPR策略的进步,以在安全粮食生产中为绿色革命的下一代革命。,在使用PGPR相关的技术到实验室的技术方面,输出将构成一个强大的基础,以解决全球粮食安全问题。在本次会议上,我们将学术界,研究人员,企业家,政策制定者,进步农民和政府官员组成,由来自印度各地的技术专家组成的核心团队,以旨在考虑并了解开发PGPR相关技术的优势和缺点,以供全国各地的农业社区使用。亚洲PGPR印度9章全国会议的议程是通过学术界和行业远见者之间的国家和全球网络建立一个很好的科学审议和讨论PGPR研究的平台。此外,邀请了对PGPR进行研究的人,院士,院士,工业家和政策制定者的可持续农业研究合作,这反过来又对年轻人的创业机会有用。
+33 559 407 470 通讯作者:Michel Thibier,michel.thibier@outlook.fr 摘要 基因组编辑,尤其是 CRISPR 技术,彻底改变了植物育种方法。世界上许多国家已决定利用它来开辟农业研究和应用的新领域,并适当调整现有的基因生物工程法规,以促进新基因组技术 (NGT) 的实施。世界各地正在进行的工作为植物和动物部门开辟了巨大的前景。欧盟已启动对其在某些植物上的使用的监管审查程序。本次审查质疑欧盟当前提案作为应对欧洲农业挑战的有效性,并得出结论:基于一再重复的预防原则,农业挑战仅被部分考虑在内,因为监管框架仍然非常严格。 关键词:基因编辑、欧盟、农业、监管、创新。引言 可能给农业带来益处的新型研究技术包括使用所谓的新基因组技术 (NGT) 进行基因改造的技术,尤其是卓越的 CRISPR/Cas 基因编辑技术。与后者相关的第一篇重要出版物的两位作者,开发了该技术的 E Charpentier 和 J Doudna (6),获得了 2020 年诺贝尔化学奖。事实上,与以前的转基因生物 (GMO) 生产技术相比,这项技术是一项技术突破,因为它可以精确地切割可以重新排列的基因组,而不会“在其余基因组中留下丝毫的人工痕迹”,正如法国科学院所强调的那样,由于这种特性,它通常被称为“分子剪刀”(1)。这些基因组变化会修改基因或等位基因的序列,从而导致被编辑生物体产生新的特性。无论是在人类健康(孤儿遗传病)、兽医健康和动物福利,还是在农作物生产中,该技术的应用都非常广泛。本篇综述旨在关注植物,并在第一部分中报告该技术在全世界植物品种创新中的巨大潜力及其当前的进展。在第二部分中,本文介绍了当前的欧盟监管环境、欧盟政治和行政当局的讨论以及 2024 年的最新举措。第三部分将尝试评估当前欧盟提案的有效性,以应对考虑到世界其他地区正在取得的进展的农业挑战。
为什么该关闭音乐了。在当今几乎所有公共场所中,我们的耳朵都被音乐的声音所刺激。在购物中心,公共房屋,餐馆,酒店和电梯中,环境声音不是人类的谈话,而是演讲者散布在空中的音乐 - 通常是看不见且难以接近的扬声器,无法因其无能为力而受到惩罚。在大多数情况下,普遍的音乐令人惊讶地平淡无奇 - 为了不在那里。这只是食用事物业务的背景。这种音乐的最差形式(有时称为Muzak)是在没有音乐家干预的情况下制作的,从标准效果的曲目中放在计算机上。因此,现代生活的背景声音越来越少。节奏是生命的声音,已在很大程度上被电脉冲所取代,该脉冲由编程的机器生成,以重复自身无限,并将其蓬勃发展的低音音符推向受害者的骨骼。现在,我们社会中的整个公民空间领域都受到这种声音的监管,这使任何人都有丝毫感觉分散注意力的人,并确保对我们许多人来说,拜访酒吧或餐厅里的一顿饭已经失去了他们的本质含义。这些不再是社交事件,而是耐力的实验,因为我们在致命的噪音中互相大喊。这种空虚的音乐已经进入了每个公共场所的根本原因:我们对音乐的态度发生了巨大变化。它会随时随地关注您,然后将其作为背景打开。对于我们的祖先来说,音乐是您坐下来听或为自己做的东西。这是一个仪式活动,您作为活跃的听众或活跃的表演者参加。无论哪种方式,您都会奉献和获得生活,分享具有重要的社会意义。由于唱片播放器,收音机,然后是iPod的出现,音乐不再是您必须为自己制作的东西,也不是您坐下来听的。这不是听到偷听的话。歌曲又一首歌曲回收了相同的暗淡旋律,机械节奏和库存和声。对于许多人来说,音乐不再是一种由我们最深刻的感觉塑造的语言,而不再是避难的地方,因为日常生活的沉闷重复,不再是一种艺术,其中遵循了遥远的结论。这只是声音的地毯,旨在使所有思想和感觉到自己的水平,以免可能会感受到严重的事情。
这种二分法的问题和有害性在于,原核生物最初在细胞学上被定义为负面的。换句话说,原核生物缺乏真核细胞的这种或那种特征:甚至油滴或凝聚层都符合这种负面定义。原核生物-真核生物二分法的任何优点在于它有助于理解真核生物,而真核生物可能是通过“原核”阶段进化而来的。随着重复(作为教义问答),原核生物-真核生物二分法只会让微生物学家轻易接受他们对原核生物之间关系几乎一无所知的事实;他们甚至对这一事实——当今最大的挑战之一——感到迟钝,即他们丝毫不了解原核生物和真核生物之间的关系。细菌之间的关系问题归结为“如果它不是真核生物,而是原核生物”,而要了解原核生物,我们只需确定大肠杆菌与真核生物有何不同。这并不是对创造性思维的邀请,也不是统一的生物学原理。这种真核生物-原核生物二分法是原核微生物学与真核微生物学之间的一道障碍。这种对微生物学的短视观点不仅未能认识到微生物关系问题的重要性,而且未能认识到今天难以解决的问题明天可能并非如此。自 20 世纪 50 年代以来,分子序列就被用于确定进化关系,而 Zuckerkandl 和 Pauling 的开创性文章“分子作为进化历史的记录”在 1965 年最令人信服地阐述了这一观点(36)。然而,记录表明,微生物学——最需要的生物科学——实际上对这些方法的意义和潜力视而不见。然而,在 20 世纪 70 年代末,情况发生了巨大变化。rRNA 序列已被证明是原核生物系统发育的关键(例如 8)。尽管原核生物在细胞和生理水平上没有提供可靠的系统发育排序特征,但它们的 rRNA 足以做到这一点。到 20 世纪 80 年代初,随着基于 rRNA 的原核生物系统发育开始出现,微生物学家开始(尽管非常缓慢地)重新意识到了解微生物系统发育的重要性。将所有原核生物视为同一种类的愚蠢做法,在古细菌(最初称为古细菌)的发现中得到了戏剧性的揭示。古细菌是一类完全出乎意料的原核生物,如果真要说有什么不同的话,那就是它与真核生物(真核生物)的关系比与其他原核生物(真正的)细菌(11、13、32、34)的关系更密切。即便如此,真核生物的力量——
News Release Successful commissioning Oerlikon Barmag WINGS FDY Technology for a sustainable polyester yarn production at Garden Silk Mills in India Remscheid (Germany) / Surat (India), February 12, 2024 – With the successful commissioning of the new polyester yarn production facility at Garden Silk Mills in Surat, India, Oerlikon Barmag once again proves that the company of the Swiss Oerlikon Industrial Group is正确的是世界领先的人造纤维植物供应商之一。聚酯纺纱厂的转换和新建筑现在总共拥有216个机翼FDY旋转装置,并伴随着广泛的工程工作,该工程与来自德国的专家密切合作进行,最重要的是来自印度。“我们特别高兴的是为另一个成功的客户配备了我们的机翼FDY技术的花园丝绸厂,” Oerlikon Polymer Processing Solutions首席执行官Georg Stausberg解释说。“我们有信心,新的,最先进的旋转厂将能够以经济上有吸引力的方式生产出最高需求的聚酯纱线,以便可以将它们提供给印度市场以及全球市场。我们祝贺花园丝绸厂的成功调试,并祝愿他们一切顺利。Garden Silk Mills Private Limited(GSMPL)的FDY纱扩展项目标志着Chatterjee Group(TCG)在其有远见的主席Purnendu Chatterjee博士的领导下,在纺织领域的快速发展。Oerlikon Barmag Wings Fdy的聚酯纱生产是什么?这些机器在日夜,年,一年中使用。及其在乔尔瓦(Jolwa)的最先进的制造工厂,生产高质量的聚酯芯片,POY,FDY和其他专业纱线,以及具有现代纱丽和着装材料的标志性花园Vareli品牌,Chatterjee Group(Chatterjee Group)的投资是80亿美元的全球投资,真正创造了明天的花园。“我们在MCPI和GSMPL致力于实现TCG董事长Purnendu Chatterjee博士的强烈纺织愿景。”产生纱线的原理始终是相同的:旋转泵在极高的压力下通过微型喷嘴按下塑料熔体,将产生的细丝捆成螺纹,延伸到godets上,并用绕线头缠绕。为了可靠地掌握这一原则,需要高精度和极其稳定的技术。以后无法纠正旋转过程中的丝毫误差。纺织品和技术纱的精确过程Oerlikon Barmag Systems几乎所有过程都用于生产纺织品和技术纱,并旋转共同聚合物聚酯聚合物聚酯聚合物,聚酰胺6和6.6或6.6或聚丙烯。花园丝绸厂专注于所谓的完全绘制的纱线(FDY)。它们被处理成纺织表面,而无需进一步完成。在需要光滑或滑行的任何地方都使用完全绘制的纱线。FDY生产的可持续解决方案Oerlikon Barmag是该领域的技术领导者。机翼概念突破了常规FDY旋转系统的极限。高纱线质量是必须的。机翼代表优化的生产过程,低废率和能源消耗降低了30%左右。该开创性技术可用于聚酯和聚酰胺的FDY过程中。
