此预印本的版权所有者于 2020 年 2 月 7 日发布此版本。;https://doi.org/10.1101/2020.02.06.936286 doi: bioRxiv preprint
凝血障碍,导致严重的临床疾病:抗凝血酶 III (AT,SERPINC1)、α-1-抗胰蛋白酶 (A1AT,SERPINA1)、补体 C1 酯酶抑制剂 (C1INH,SERPING1) 和神经丝氨酸蛋白酶抑制剂 (NSP,SERPINI1) 分别与严重的凝血障碍、严重的肺气肿、血管性水肿和痴呆、癫痫和神经退行性疾病有关。人们经常没有讨论的是丝氨酸蛋白酶抑制剂的独特性质,这些性质使这些蛋白质能够如此有效地发挥功能,成为强大而广泛有效的中枢心血管、血液学和免疫反应途径调节剂——平衡血栓形成(血凝块形成)和血栓溶解(血凝块溶解)在止血、血管反应、肺功能、神经元信号传导和炎症等多种功能中。丝氨酸蛋白酶抑制剂在不同生理和进化背景下的普遍存在与四个核心特征相对应:(i)它们作为抑制剂的作用,专门作用于靶蛋白酶活性增加的位点;(ii)独特的“自杀式”抑制作用机制;(iii)能够靶向多种蛋白酶靶点;(iv)丝氨酸蛋白酶抑制剂结构适合于抑制活性的变构微调(Maas & de Maat,2021)。这种抑制机制已得到广泛研究。作为蛋白酶抑制剂发挥作用的丝氨酸蛋白酶抑制剂被折叠成高能结构,在相互作用时
抗病毒细胞因子干扰素(IFN)激活IFN刺激基因(ISGS)的表达以建立抗病毒态。粘菌病毒抗性2(MX2/MXB)是一种ISG,它抑制了HIV-1的核进口并与病毒式衣壳和细胞核转运机械相互作用。我们将肌球蛋白轻链磷酸酶(MLCP)亚基MyPT1和PPP1CB作为MX2的正常作用调节剂,与其N末端结构域(NTD)相互作用。我们证明了NTD在14、17和18的位置的丝氨酸磷酸化抑制了MX2抗病毒功能,可防止与HIV-1帽骨和核转运因子的相互作用,并由MLCP逆转。重要的是,NTD丝氨酸磷酸化还阻碍了MX2介导的细胞核货物进口的抑制作用。我们还发现,IFN治疗降低了这些丝氨酸处的磷酸化水平,并概述了稳态调节机制,其中通过磷酸化对MX2的抑制以及MLCP介导的去磷酸化的抑制作用,平衡MX2对MX2对正常细胞与HISATE免疫功能的有害作用平衡,与HIV-1抗HIV-1。
抗生素耐药性是公共卫生面临的一大挑战,过去的一年里这一问题愈演愈烈 [1, 2]。对于由细菌病原体金黄色葡萄球菌引起的感染尤其如此,这种感染是导致死亡的主要原因,通常与社区获得性耐药菌株 (MRSA) 有关 [3]。这就迫切需要找到新的解决方案,以便有效地诊断和治疗,克服耐药性,避免抗生素库的耗尽。需要金黄色葡萄球菌内的新蛋白质靶点来开发有效的诊断探针,既可用于成像应用,也可用于治疗策略,以阻断细菌的生产性感染,而不会迫使生物体选择耐药突变体。基于氟膦酸酯的活性探针在促进生物膜生长的条件下,鉴定出金黄色葡萄球菌中十种以前未鉴定的活性丝氨酸水解酶,这可以满足这一需求。这些酶被命名为氟膦酸酯结合水解酶 (Fphs),每个酶的字母顺序取决于其预测大小 (52 kD FphA – 22 kD FphJ) [4]。它们都是 α/β 水解酶超家族的成员,其特点是核心由八个 β 链组成,这些 β 链由几个 α 螺旋连接,活性位点为丝氨酸-组氨酸-天冬氨酸或谷氨酸三联体。亲核丝氨酸用于水解底物,小分子可以轻松且特异性地靶向 [5, 6]。一般来说,这些蛋白质在代谢物、肽和脂质的加工中起着重要作用,是控制细胞信号传导和代谢的一种手段;然而,到目前为止,所有 Fphs 的生物学功能仍然未知,只有 FphF 的结构被确定 [6, 7]。它们在生物膜形成条件下的活性状态使它们易于通过化学抑制剂进行修饰,从而开发成探针和药物。这种新化合物
摘要:从海洋细菌丝氨酸蛋白酶醌 ( SQ1 ) 中分离得到,其特点是它对黑色素瘤细胞系具有选择性活性,其特点是它能调节人类皮脂蛋白并诱导自噬和细胞凋亡。虽然 SQ1 是一种活性先导化合物,但它在有机和水介质中都缺乏溶解性,这使其临床前评估变得复杂。为此,我们的团队将精力转向探索类似物,目的是找到具有可比选择性和活性的可合成材料。类似物 SQ2 显示出更好的溶解性,对黑色素瘤细胞的选择性提高了 30-40 倍。在这里,我们详细报告了 SQ1 和 SQ2 在携带主要黑色素瘤相关突变 BRAF V600E 和 NRAS Q61R 的 SK-MEL-28 和 SK-MEL-147 细胞系中的活性比较。这些研究提供了一份关于暴露于 SQ1 或 SQ2 后的活性、生存力、克隆形成性、皮细胞素表达、自噬和凋亡诱导的权威报告。总体而言,这些研究表明 SQ1 和 SQ2 表现出类似的活性和对皮细胞素表达的调节。通过评估与自噬和凋亡相关的关键基因的一组基础表达,这些研究得到了进一步的支持,从而进一步深入了解了这些突变的作用。为了探索这是一种生存还是死亡机制,自噬抑制使 BRAF 突变体对 SQ1 和 SQ2 敏感,而 NRAS 突变体则发生相反的情况。这些数据表明,丝氨酸醌仍然保持活性,与黑色素瘤突变无关,并表明未来可将它们与自噬抑制剂联合使用来治疗 BRAF 突变的肿瘤。
丝氨酸最近被鉴定为肿瘤生成,进展和适应性免疫的必不可少的代谢产物。受许多生理或肿瘤环境因素的影响,丝氨酸合成,摄取和用法的代谢途径被异构繁殖,并且经常在肿瘤或肿瘤相关细胞中扩增。丝氨酸代谢的过度激活促进了异常的细胞核苷酸/蛋白质/脂质合成,线粒体功能和表观遗传修饰,从而驱动恶性转化,无限制的增殖,转移,转移,免疫抑制和肿瘤抗药性。饮食限制丝氨酸或磷酸甘油酸脱氢酶消耗可减轻肿瘤的生长并扩展肿瘤患者的存活。相应地,这些发现引发了针对丝氨酸代谢的新型治疗剂的发展。在这项研究中,总结了丝氨酸代谢重编程的潜在机制和细胞功能的最新发现。概述了丝氨酸代谢在肿瘤发生,肿瘤干,肿瘤免疫和治疗性抗性中的至关重要作用。最后,详细描述了靶向丝氨酸代谢途径的一些潜在肿瘤治疗概念,策略和局限性。综上所述,这篇综述强调了丝氨酸代谢重编程在肿瘤发生和进展中的重要性,并突出了饮食限制或选择性药理干预的新机会。
凯奥大学医学院药理学系,东京35新库库 - 库,日本160-8582。 2。 当前地址;美国马萨诸塞州波士顿的杨百翰和妇女医院传染病科。 3。 SI医学研究中心和日本吉基大学医学院实验室医学系,日本105-8461。 4。 当前地址;伊瓦特大学农业学院生物化学系,伊瓦特,日本020-8550,5。 日本,凯奥大学医学院Neurosurger系,35 Shinjuku-ku,日本160-8582。 6。 东京医科大学医学学院,日本东京,日本东京,日本凯奥大学,尤里奥大学,日本山口 吉塔萨托大学药学研究生院,5-9-1西罗坎,米纳托 - 库,东京108–8641,日本8。 <东京医科大学的药理学划分,日本东京库库市6-1-1,日本160-8402。 9。 日本东京160-8582的凯奥大学医学院内科学系,凯奥大学医学院。 11。凯奥大学医学院药理学系,东京35新库库 - 库,日本160-8582。 2。 当前地址;美国马萨诸塞州波士顿的杨百翰和妇女医院传染病科。 3。 SI医学研究中心和日本吉基大学医学院实验室医学系,日本105-8461。 4。 当前地址;伊瓦特大学农业学院生物化学系,伊瓦特,日本020-8550,5。 日本,凯奥大学医学院Neurosurger系,35 Shinjuku-ku,日本160-8582。 6。 东京医科大学医学学院,日本东京,日本东京,日本凯奥大学,尤里奥大学,日本山口 吉塔萨托大学药学研究生院,5-9-1西罗坎,米纳托 - 库,东京108–8641,日本8。 <东京医科大学的药理学划分,日本东京库库市6-1-1,日本160-8402。 9。 日本东京160-8582的凯奥大学医学院内科学系,凯奥大学医学院。 11。凯奥大学医学院药理学系,东京35新库库 - 库,日本160-8582。2。当前地址;美国马萨诸塞州波士顿的杨百翰和妇女医院传染病科。3。SI医学研究中心和日本吉基大学医学院实验室医学系,日本105-8461。 4。 当前地址;伊瓦特大学农业学院生物化学系,伊瓦特,日本020-8550,5。 日本,凯奥大学医学院Neurosurger系,35 Shinjuku-ku,日本160-8582。 6。 东京医科大学医学学院,日本东京,日本东京,日本凯奥大学,尤里奥大学,日本山口 吉塔萨托大学药学研究生院,5-9-1西罗坎,米纳托 - 库,东京108–8641,日本8。 <东京医科大学的药理学划分,日本东京库库市6-1-1,日本160-8402。 9。 日本东京160-8582的凯奥大学医学院内科学系,凯奥大学医学院。 11。SI医学研究中心和日本吉基大学医学院实验室医学系,日本105-8461。4。当前地址;伊瓦特大学农业学院生物化学系,伊瓦特,日本020-8550,5。日本,凯奥大学医学院Neurosurger系,35 Shinjuku-ku,日本160-8582。 6。 东京医科大学医学学院,日本东京,日本东京,日本凯奥大学,尤里奥大学,日本山口 吉塔萨托大学药学研究生院,5-9-1西罗坎,米纳托 - 库,东京108–8641,日本8。 <东京医科大学的药理学划分,日本东京库库市6-1-1,日本160-8402。 9。 日本东京160-8582的凯奥大学医学院内科学系,凯奥大学医学院。 11。日本,凯奥大学医学院Neurosurger系,35 Shinjuku-ku,日本160-8582。6。东京医科大学医学学院,日本东京,日本东京,日本凯奥大学,尤里奥大学,日本山口吉塔萨托大学药学研究生院,5-9-1西罗坎,米纳托 - 库,东京108–8641,日本8。<东京医科大学的药理学划分,日本东京库库市6-1-1,日本160-8402。9。日本东京160-8582的凯奥大学医学院内科学系,凯奥大学医学院。11。凯奥大学机械工程系,3-14-1 Hiyoshi,Kohoku-ku,横滨,卡纳那川223-8522,日本计算机分子设计实验室,Riken Biiken Biosystems Dynamerss Dynamics Research(BDR),Osaka 565--0874,日本10。人类生物学 - 微生物 - 量词研究中心(WPI-BIO2Q),Keio University,东京160-8582,日本#这些作者贡献了同样的贡献。12应该解决信件:铃木穆萨塔克(Masataka Suzuki)和凯奥·萨萨贝(Jumpei Sasabe)药理学系,凯奥大学医学院(Keio University of Medicine of Medicine of Medicine of Medicine of Medicine of School of Medicine of School of School of Shinjuku-ku),东京160-8582日本。电话: +81-3-5363-3750。传真: +81-3-3359-8889。电子邮件:masataka.s@keio.jp; sasabe@keio.jp电子邮件:masataka.s@keio.jp; sasabe@keio.jp
Laura Corneillie,Irma Lemmens,Claire Montpellier,MartinFerrié,Karin Weening等。磷脂酰丝氨酸受体TIM1促进了包膜乙型肝炎病毒的感染。细胞和分子生命科学,2023,80(11),pp.326。10.1007/S00018-023-04977-4。hal-04245784
现代基因组工程技术已经能够以有针对性的方式对哺乳动物细胞进行改造,从单核苷酸改变到插入更大的转基因有效载荷。然而,利用靶向核酸酶(如 CRISPR/Cas9)的方法依赖于细胞 DNA 修复机制进行同源定向修复介导的整合,需要产生暴露的 DNA 双链断裂 (DSB),在插入较大的 DNA 货物时效率极低,并且经常导致不必要的编辑结果 1–4 。人类多能干细胞 (hPSC) 通过整合治疗有效载荷基因并分化为所需的细胞类型,为细胞治疗应用提供了巨大的潜力 5–8 然而,hPSC 特别难以工程化,因为它们易受 p53 介导的 DNA 损伤反应诱导的细胞凋亡的影响 9,10 。丝氨酸整合酶(例如 BxbI)不依赖于细胞机制并且不被认为产生暴露的 DSB,因此最近它们已被用于成功地将大有效载荷整合到 hPSC 中,既直接整合到预先设计的着陆垫中 11-13 ,也与 Cas9 介导的靶向结合使用 14-16 。通过整合选择标记 11,17,18 ,可以生成 100% 工程化的 hPSC 群体,但是如果没有选择,报告的靶向效率仍然非常低,通常低于 1% 13,18 。许多应用将受益于 hPSC 中大有效载荷的更高整合效率,因此一直在努力开发更有效的 BxbI 蛋白,但是到目前为止,这些努力仅导致 hPSC 靶向效率达到 3.8% 16,19 。在本研究中,我们着手测试是否可以通过优化核苷酸序列、递送方法和抑制 p53 通路来提高 BxbI 整合酶在 hPSC 中的靶向效率。
发育突触重塑对于形成精确的神经回路很重要,并且其破坏与自闭症和精神分裂症等神经发育障碍有关。小胶质细胞修剪突触,但这种突触修剪与重叠和并发神经发育过程的整合仍然难以捉摸。粘附G蛋白偶联受体ADGRG 1 / GPR 56以细胞类型的方式控制脑发育的多个方面:在神经祖细胞中,GPR 56调节皮质层压层,而在少突甘胶祖细胞细胞中,GPR 56在GPR 56中控制发育的骨髓和肌蛋白。在这里,我们表明小胶质细胞GPR 56以时间和电路依赖性方式在几个大脑区域保持适当的突触数。磷脂酰丝氨酸(PS)在突触前元素上以域特异性方式结合GPR 56,而GPR 56的小胶质细胞特异性缺失导致突触增加,这是由于PS + PES +突触前输入的小胶质细胞吞吐量降低而导致的。非常明显,小胶质细胞介导的突触修剪需要特定的GPR 56的剪接同工型。我们的目前数据在复杂的神经发育过程的背景下提供了小胶质细胞GPR 56介导的突触修剪的配体和同工型特定机制。