结果表明,TSFP能显著降低糖尿病小鼠的空腹血糖(FBG)水平并抑制糖代谢基因的mRNA表达。此外,TSFP可以改善脂质代谢紊乱并提高抗氧化能力。此外,TSFP可以减轻糖尿病小鼠的病理损伤并阻碍炎症过程。此外,补充TSFP通过丰富有益细菌和抑制病原微生物表现出更强的塑造和优化肠道微生物组成的能力。相关性分析还显示,TSFP治疗组的功能性细菌丰度与血清参数表现出更好的相关性,这对血糖调节和炎症缓解具有积极意义。
随着物联网 (IoT) 的快速发展和 5G 的引入,传统的硅基电子产品已无法完全满足市场需求,例如由于机械不匹配导致的非平面应用环境。这为使用柔性材料避免物理刚性的柔性电子产品带来了前所未有的可能性。丝素蛋白、纤维素、果胶、壳聚糖和黑色素因其出色的生物相容性和生物降解性而成为下一代柔性电子产品最有吸引力的材料之一。丝素蛋白在生物相容性和生物降解性方面优于它们,并且还具有多种其他理想特性,例如可调节的水溶性、出色的光学透射率、高机械弹性、重量轻和易于加工,而这些特性是其他材料部分或完全不具备的。因此,丝素蛋白已成为生物相容性柔性电子产品最广泛使用的构建块之一,尤其是用于可穿戴和可植入设备。此外,近年来,丝素蛋白的功能特性研究也越来越受到重视,如介电特性、压电特性、高失电子倾向性、环境敏感性等。本文不仅介绍了不同种类丝素蛋白的制备技术以及丝素蛋白作为基础材料应用的最新进展,还介绍了丝素蛋白作为功能元件的最新进展。本文还对丝素蛋白基柔性电子产品面临的挑战和未来发展进行了探讨。
1 亚琛工业大学亥姆霍兹研究所应用医学工程研究所生物混合与医用纺织品系 (BioTex),D-52074 亚琛,德国; el-maachi@ame.rwth-aachen.de (IEM); kyriakou@ame.rwth-aachen.de (SK) 2 电子显微镜设备,Uniklinik RWTH Aachen,D-52074 Aachen,德国; sruetten@ukaachen.de 3 Fibrothelium GmbH,D-52068 亚琛,德国; alexander.kopp@fibrothelium.com(AK); marius.koepf@fibrothelium.com (MK) 4 AMIBM-亚琛-马斯特里赫特生物材料研究所,科学与工程学院,Brightlands Chemelot Campus, Maastricht University, 6167 RD Geleen, The Dutch * 通讯作者:jockenhoevel@ame.rwth-aachen.de (SJ); fernandez@ame.rwth-aachen.de (AF-C.);电话:+49-241-80-47478(新加坡); +49-241-80-47470 (AF-C.)
1 帕维亚大学药物科学系,Viale Taramelli 12,I-27100 帕维亚,意大利; elia.bari@unipv.it (EB); massimo.serra@unipv.it (MS); mayra.paolillo@unipv.it (国会议员); eric.bernardi01@universitadipavia.it (EB); sara.tengattini@unipv.it (ST); cristina.lanni@unipv.it (CL); giovanni.bisbano01@universitadipavia.it (英国); enrica.calleri@unipv.it (欧盟); sara.perteghella@unipv.it (SP)2 IRCCS 罗马涅肿瘤研究所(IRST)“Dino Amadori”,Via Piero Maroncelli 40,I-47014 Meldola,意大利; filippo.piccinini@irst.emr.it 3 创新技术系,SUPSI,卢加诺大学中心,Campus Est,Via la Santa 1, 6962 Viganello,瑞士; marzio.sorlini@supsi.ch 4 PharmaExceed Srl, Piazza Castello 19, I-27100 Pavia, 意大利 * 通信地址:marina.torre@unipv.it † 同样为这项工作做出了贡献。
将可拉伸电极或装置从一种基底转移到另一种薄弹性体上是一项艰巨的任务,因为弹性印章通常会在脱粘界面处产生巨大的应变,超出电极的拉伸极限。如果印章是刚性的,则不会发生这种情况。然而,刚性材料不能用作可拉伸电极的基底。在此,具有可调刚性的丝素蛋白(通过控制相对湿度,杨氏模量可以从 134 kPa 变为 1.84 GPa)用于将高度可拉伸的金属网络转移为高度可塑的表皮电极。丝素蛋白印章在剥离过程中被调节为刚性,然后在层压在湿润的人体皮肤上时作为基底变得柔软且高度可拉伸。此外,表皮电极在连接超过 10 天后没有表现出皮肤刺激或炎症。与商用 Ag-AgCl 凝胶电极相比,高柔顺性可降低界面阻抗,并在测量肌电信号时降低电极的噪声。在转移的不同阶段调整刚度的策略是一种通用方法,可以扩展到转移其他可拉伸电极和表皮电子器件、人机界面和软机器人。