稀释和清洁 必要时使用溶剂 40 稀释或清洁。稀释和清洁时应避免使用任何含酒精的清洁剂。 干燥 涂抹此油墨后,必须清除所有残留溶剂。干燥不彻底会导致油墨表面看起来干燥,而溶剂会滞留在表面下方,导致电阻增加,这表明存在溶剂滞留。随着时间的推移,滞留的溶剂会从油墨中迁移出来,并可能导致油墨与任何材料(如电介质)的粘附问题。 在通过干燥炉或批量干燥炉一次循环后,评估沿其中一条导电路径的点对点电阻。让基材再进行一次干燥循环。再次沿同一路径测量点对点电阻,并将其与原始读数进行比较。如果电阻下降幅度小于 10%,则油墨在第一次干燥循环或通过烤箱后基本干燥。如果电阻下降超过 10%,则需要更长的干燥时间才能完全去除溶剂。
由于公众对可持续性的推动,纸电子产品的兴起已经加速。电子废物。在本报告中,可以证明导电聚合物聚(3,4-乙二醇氧噻吩)(PEDOT),多吡咯和聚噻吩可以通过丝网印刷与纸张底物上的蒸气相聚合结合并进一步掺入功能性电子成分来合成。高模式分辨率(100μm),PEDOT显示出令人印象深刻的板电阻值。PEDOT作为导电电路并在全印刷的电致色素显示器中作为导电电路。导电聚合物电路允许发射功能发光二极管,而电致色素显示器可与使用PEDOT在塑料底物上使用PEDOT相当。
近年来,大多数人主要对时尚的私密服装感兴趣,而不是考虑健康方面。由于繁忙的日程安排,他们穿上这些服装持续时间更长,面临许多皮肤疾病。然而,只有一个特定的消费者寻求抗菌,抗氧化剂,抗炎症和抗异常纺织品 /服装,能够促进更健康的生活方式并保留自尊心3。人们认为,身体糖果是围绕crot,生殖器,腹股沟和腋窝等地方散发出来的不良气味的主要原因。然而,发现我们体内的一些细菌会喂食或消耗汗水,从而导致汗水中的酸分解并引起体味。另一方面,某些疾病或荷尔蒙变化也会触发体味4。这样的气味主要是有机化合物,其中包含不同的官能团和化学结构。,例如胺,醇,醛酮苯酚等。5。另一方面,大蒜,洋葱,酒精和某些药物的消耗也可以增强人体产生的气味6,7。某些条件(例如运动,运动和努力工作)会产生更多的汗水,倾向于细菌生长,从而引起气味。
可拉伸电子产品在医学、传感和机器人领域的应用越来越受到关注。当前的可拉伸材料要么是本质上可拉伸的,要么是图案化为可拉伸结构,要么是通过形成某种可拉伸材料和具有某些所需特性(例如高导电性)的刚性材料的复合材料而制成的。然而,文献中缺乏可拉伸磁性材料,而将可拉伸性和磁性相结合的设备仅限于使用串行制造工艺,例如将毫米级磁体嵌入聚合物基质中。在这项研究中,我们介绍了一种可拉伸复合硬磁墨水,该墨水由钡六铁氧体纳米颗粒与 9510 单组分环氧灌封化合物和二(丙二醇)甲醚混合而成。然后使用丝网印刷方法,将该墨水用于制造磁应变传感器,作为材料和工艺的概念验证。结果表明,可以制成一种可拉伸的硬磁墨水,其由钡六铁氧体颗粒夹杂物提供 20 kA/m 的剩磁,并由环氧树脂提供至少 100% 应变的拉伸性。
摘要:丝网印刷等高通量生产方法可以将可拉伸电子产品从实验室带入市场。由于其良好的性价比,大多数用于丝网印刷的可拉伸导体油墨都是基于银纳米颗粒或薄片的,但银容易失去光泽和腐蚀,从而限制了此类导体的稳定性。在这里,我们报告了一种经济高效且可扩展的方法来解决这个问题,即开发基于银薄片的丝网印刷油墨,银薄片上涂有一层薄薄的金。印刷的可拉伸 AgAu 导体的电导率达到 8500 S cm − 1,在高达 250% 的应变下仍保持导电性,表现出优异的腐蚀和失去光泽稳定性,并用于演示可穿戴 LED 和 NFC 电路。所报告的方法对智能服装很有吸引力,因为这种设备在各种环境中都有望长期发挥作用。关键词:可拉伸电子产品、软电子产品、印刷电子产品、金、银薄片、腐蚀、稳定性、NFC ■ 介绍
肌钙蛋白T(Karimian等人2013),上皮卵巢癌抗原(Wang等人2010)和13
摘要环保导电棉纺织品是可穿戴设备中柔性底物的有希望的替代方法,因为棉花是一种廉价的天然织物材料,并且在现代便携式电子设备中兼容,具有足够的电导率。在这项工作中,使用碳质纳米材料(例如碳纳米管(CNT))和石墨烯和额外的导电银(AG)粉末和纺织墨水的碳质纳米材料(例如碳纳米管(CNT)),通过屏幕打印方法制备了柔性导电棉电极。制备的导电棉电极以及较高的质量负载(20-30 mg cm -2)表现出较低的板电阻(<10Ω)。在制备的棉电极的性能下,成功制造了全纤维状态的柔性超级电容器装置,该设备表现出高度特异性的677.12 MF cm -2,在0.0125macm-2时,使用AG和40%CNTOLE的电极组合物(60%),使用AG和40%Cntole)。使用不同的弯曲角度(0,30,45,45,60和90)在严重的机械变形下稳定的电化学性能稳定,并且即使在3000 CV循环后,电容保持范围即使在〜80%的情况下具有出色的环状稳定性,并且具有出色的循环稳定性。
高效电力驱动项目启动:德累斯顿弗劳恩霍夫 IFAM 研究所开发混合金属板 德累斯顿弗劳恩霍夫制造技术与先进材料研究所 (IFAM) 正在与合作伙伴合作开展一个新项目,开发用于电力驱动的混合电气板。在西门子的协调下,“InnoBlech”项目正在基于增材丝网印刷技术开发用于电力驱动的创新电气板。其他合作伙伴包括达姆施塔特工业大学、Ford-Werke GmbH 和 EKRA Automatisierungs GmbH 公司。“InnoBlech”的核心开发目标是为磁阻或 PMSM/IPM 电机的转子提供机械和磁性改进的金属板封装。该项目基于资源高效的 3D 丝网印刷工艺,旨在有针对性地全面改善金属板封装的机械和磁性。丝网印刷工艺不仅可以使电工薄板更薄、更高效,而且可以将不同的材料或合金并排或叠放在一起。这样,电工薄板就可以采用新的设计,并制造出具有局部适应的磁性能的薄板。该技术方法是在丝网印刷工艺中通过共烧结将不同的软磁材料相互结合或将软磁和非磁性铁基合金结合在一起。为此,将进一步开发已以丝网印刷为基础开发的铁基混合材料,以用于优化的电驱动混合转子叠片,特别是磁阻和永磁同步 (PMSM、IPM) 电机。具体来说,将解决以下具体开发目标:
有价证件的伪造和掺假会造成经济损失并引发社会关注。防伪工作需要先进的材料和技术来防止伪造。荧光油墨通常用作二级安全特征;在日光下不可见,在紫外线下可检测。在过去十年中,为了防止伪造,人们使用不同的印刷技术制作了安全标签,其中使用各种荧光油墨,这些油墨由稀土发光材料 1-6 钙钛矿纳米晶体、7,8 碳点、9-11 有机染料、12,13 和量子点配制而成。14-16 在各种印刷方法中,丝网印刷是首选,因为它很容易应用于各种基材。17 丝网印刷是一种独特的技术,因为它具有
引言 软交互设备正变得越来越流行,因为它们提供了独特的功能,并且可以无缝嵌入到要求苛刻的物理环境中。除了柔性设备之外,人们还探索了各种各样的软界面,包括可拉伸物体[61]、适形皮肤穿戴界面[59]、电子纺织品[3,21]和变形设备[8,37,42,66]。这些设备通常使用丝网印刷[38,62]、缝纫[13]或硅胶铸造[8,34,59,67]等技术制作。这些技术虽然用途广泛,但却很复杂且耗时,因为它们通常需要大量的手动步骤、专业知识和先进的设备。例如,创建一个丝网印刷或硅胶铸造的电路通常需要几个小时。这极大地限制了研究和创客社区探索新的软设备和交互。