气候变化目前被认为是对现代人类的最大威胁 - 部分是因为与气候相关的危机可能导致收入来源丧失,并严重破坏医疗保健系统[2]。全球,气候变化正在改变天气事件的程度和频率,例如洪水,干旱,热浪和野火[3]。极端气候事件的增加也会增加疾病的风险,例如,通过新的新兴传染病的传播传播,这些疾病受到生态系统损害,贫困,卫生状况不佳和抗生素过度使用的青睐[3]。证据表明,气候变化对心理健康以及身体和社会健康有负面影响。影响的影响可能从抑郁,焦虑和创伤疾病的增加到诸如粮食短缺,经济
Leigh综合征是一种罕见,复杂且无法治愈的早期发作(通常是婴儿或幼儿期)线粒体疾病,具有表型和遗传异质性。这种疾病的异质性,部分基于线粒体遗传学的复杂性,以及核和线粒体基因组之间的显着相互作用使研究和开发疗法特别具有挑战性。本评论文章讨论了迄今为止在领域中取得的一些进步。虽然预后较差,目前没有实质性治疗方案,但正在进行多项研究以了解利综合征的病因,发病机理和病理生理学。随着可用研究工具的进步,可以更好地了解健康和疾病中的线粒体,因此将来有新的治疗选择。
在本文中,我将通过争论以下三个论文来对这个问题提供细微的回答:(i)对深度学习(DL)模型(适当地解释)在特定意义上具有重要意义,它使他们与许多(尽管并非全部)传统科学模型(包括计算机模拟(CSS))区分开来。(ii)XAI涉及两种不同种类的黑盒子,或不透明度,而减少一个则不必有助于减少另一个。这些可能被视为DL不透明度问题的两个维度 - 我将在下面进行确切的概念。(iii)这种不透明度和工具性的独特组合意味着我们通常不能期望了解数据成功的数据(决定性模式)的基本机制(决定性模式),并通过DL算法完全认可和预测。3特别是,当共同满足某些条件时,DL很有可能允许新发现,科学家将很难理解。本文的主要目标是从科学的观点哲学中,对DL革命或不断变化的科学的主张是有道理的。建立(i) - (iii)需要一些概念上的努力。首先,我将区分DNN是模型的三种感觉(2.1),并区分适合我的目的的含义。随后(Sects。2.3和2.4),然后我将确定相关的工具意识,以及为什么它使DL模型不言自明。在教派中。4,然后我将展示DNNS的工具性和不透明度如何导致发现与解释之间前所未有的差距。第3节将定义概念,并主张存在,并为DL的不透明度提供了两个维度;这意味着DNN是不透明的,而CSS的(知名)不透明度无法降低。,与DL在处理大数据方面的前所未有的成功一起,我称之为DL困境。
II。 相干长度是对超导电子浓度在空间变化的磁场中无法发生巨大变化的距离的度量。 与伦敦方程是局部方程式不同,相干长度是对向量电位a(r)必须平均以获得J s(r)的范围的量度。 由于状态的空间变化需要额外的动能,因此有必要限制J S(R)的空间变化,以使额外的能量小于超导状态的能量差距。 比较平面波和调制波,获得相干长度的近似表达。II。相干长度是对超导电子浓度在空间变化的磁场中无法发生巨大变化的距离的度量。与伦敦方程是局部方程式不同,相干长度是对向量电位a(r)必须平均以获得J s(r)的范围的量度。由于状态的空间变化需要额外的动能,因此有必要限制J S(R)的空间变化,以使额外的能量小于超导状态的能量差距。比较平面波和调制波,获得相干长度的近似表达。
近年来,使用摩托车和发电机作为摩托车和发电机的使用已大大增加。永久磁性机器(MMP)现在可以在各种技术系统中找到,例如电动汽车,机器人,飞机,无人机,船,可再生能源系统等。增加了MMP的使用与电机领域的数值和制造分析技术的开发是不可分割的。行业和研究人员现在在查看开发MMP和其他电动机的各个方面都有相同的理解。因此,在通过基于数值的分析产生之前,可以更准确地预测MMP的性能。目前,MMP的性能和构造可以根据要应用的系统轻松设计。
一维(1D)电子系统的Luttinger液体(LL)模型提供了一种强大的工具,可用于理解诸如Spin-Char-Charge Eapination等现象1。实质性的理论努力试图将LL现象学扩展到两个维度(2D),尤其是在1D量子线2-19的紧密堆积阵列的模型中,每种模型都被描述为LL。此类耦合线模型已成功用于构建2D各向异性非Fermi液体2-6,量子霍尔状态7-14,拓扑阶段15-17和量子自旋液体18,19。然而,适合实现这些模型的1D LLS高质量阵列的实验证明仍然没有。在这里,我们报告了由扭曲的双层钨ditelliride(TWTE 2)制成的Moiré超级晶格中的1D LLS的2D阵列实现的实验性实现。源自单层的各向异性晶格,TWTE 2的Moiré模式托有相同的平行1D电子通道,由固定的纳米级距离隔开,该距离可通过层间扭曲角度调节。在〜5度的扭曲角度下,我们发现孔掺杂的TWTE 2表现出极大的转运各向异性,电阻比在两个正交间隙内方向之间的电阻比约为1000。各界电导表现出功率法缩放行为,这与类似于LLS数组的2D各向异性相的形成一致。我们的结果为实现基于耦合线模型和LL物理学的各种相关和拓扑量子相打开了大门。
避免我们对人脑的理解需要对神经回路在包括实验室小鼠在内的哺乳动物的工作方式的新见解。这些研究需要使用显微镜监测大脑活动,该显微镜提供足够高的分辨率,以查看单个神经元及其邻居。两光子(2p)荧光显微镜具有明显的先进研究人员的能力,而UC Santa Barbara电气和计算机工程系的副教授Spencer Lavere Smith的实验室是与技术相关的研究枢纽。As the principal investigator on the five-year, $9 million NSF–funded Next Generation Multiphoton Neuroimaging Consortium (NEMONIC) hub, which was born of President Obama's BRAIN Initiative and is headquartered at UCSB, Smith says he is working, “to push the frontiers of multi-photon microscopy for neuroscience research.”去年秋天,在自然传播中,史密斯和他的合着者报告了他们形容为
为了满足在太空领域日益增长的作战需求,空间领域意识 (SDA) 操作员必须确定如何更有效地优先考虑传感器观测,扩大规模以满足驻留空间物体的绝对数量,并开发反映轨道力学和空间作战复杂性的分析能力,同时保持作战领域作战所需的响应能力。这些因素对负责 SDA 任务的人员提出了重大挑战,并指出该任务是人工智能 (AI) 和机器学习 (ML) 工具支持的主要候选者,因为此类工具有可能提高分析速度,扩大可用于此分析的数据量,并腾出操作员时间来执行更复杂的任务。AI/ML 工具可能有助于 SDA 操作员应对这些日益严峻的挑战。
物理学中的互补原理认为,要完全了解原子尺度上的现象,需要描述波和粒子的特性。该原理由丹麦物理学家尼尔斯·玻尔于 1928 年提出。他的说法是,根据实验布置,光和电子等现象的行为有时像波,有时像粒子,并且不可能同时观察到波和粒子两种特性。下面将表明,所有传统量子力学的实际怪异性都来自基本量子力学定义中含义的逻辑不一致,与现象尺度和附加的人为互补原理无关 [1] [2] [3] [4]。下面将解释,理论不应该谈论互补性,而应该谈论将测量过程布置适当地分为操作
2. 未来的技术和后勤团队,一个经历过多方面危机的组织....................................... ................................................. ...................................................... 56