摘要:通过不同的作用机制对癌症进行化学/基因治疗的组合已经出现,以增强癌症的治疗功效,并且由于缺乏高效和生物相容性的纳米载体,仍然仍然是一项具有挑战性的任务。在这项工作中,我们报告了一种新的纳米系统,基于两亲性磷齿状(1-C12G1)胶束胶束,以用于三层microRNA-21抑制剂(miR-21i)和阿霉素(DOX)(DOX),用于三重阴性乳腺癌的联合治疗。制备了长线性烷基链和十个质子化吡咯烷表面基的两亲磷齿状树状,并证明在水溶液中形成胶束,并具有103.2 nm的水动力大小。胶束被证明是稳定的,能够封装具有最佳负载含量(80%)和封装效率(98%)的抗癌药物DOX,并且可以压缩miR-21i以形成双流线物以使其具有良好的稳定性,以抗退化。1-C12G1@dox/miR-21i流媒体的共传递系统具有pH依赖性的DOX释放曲线,并且可以很容易被癌细胞吞噬以抑制它们,因为它们在静脉内静脉内注射后被进一步验证,该抗癌机构得到了进一步验证,以处理静脉内的三重乳液模型。具有在研究剂量下经过验证的生物相容性,可以开发出开发的两亲性磷状胶束,以作为一种有效的纳米医学制剂,用于协同癌症治疗。
摘要:殖民地,通常称为松香,是一种从松树和其他植物获得的树脂的固体形式,主要是针叶树。这是有机化合物的复杂混合物,在各种应用中具有丰富的使用史,例如粘合剂,清漆和焊接通量的制造。值得注意的是,它的特性使自己充当腐蚀抑制剂,这种作用在材料科学和工业应用中引起了人们的关注。该检查探讨了殖民地作为一种腐蚀抑制剂的机械功能,探索其应用的多样性,并严格评估其功效和局限性。colophony被认为是绿油,因为它是一种可再生,廉价且环保的材料。Colophony(也称为海军商店)提高船舶密封特性的能力是一个众所周知的功能。在石油工业中,由于其两亲性质,殖民地衍生物作为腐蚀抑制剂的兴趣增加。此外,它可以用作石油分散剂。的合成和衍生物作为金属表面腐蚀和腐蚀性环境中合金溶解的抑制剂。综述了合成衍生物作为腐蚀抑制剂的新型方法和基本化学反应。毒性研究批准了colophony及其衍生物实际上是无毒的成分。这一证据加强了殖民地是工业应用的升级的原因。因此,与毒性腐蚀抑制剂相比,合成和衍生物作为晚期聚合物应用的独特原料是有利的。关键说明是,殖民地和衍生物不会在海上运输等田间造成水污染。关键词:松香/彩色;松蛋白酯,腐蚀化学品,高油松香,口香糖松香
构建细胞膜的功能模拟物是开发合成细胞的重要任务。到目前为止,脂质和两亲性嵌段共聚物是最广泛使用的两亲物,前者形成的双层膜缺乏稳定性,而后者形成的膜通常具有非常缓慢的动力学特征。在此,介绍了一种新型 Janus 树枝状聚合物,其含有两性离子磷酸胆碱亲水头基 (JD PC ) 和 3,5-取代的二氢苯甲酸酯基疏水树枝状大分子。JD PC 在水中自组装成两性离子树枝状大分子体 (z-DS),其在厚度、柔韧性和流动性方面忠实地再现细胞膜,同时具有耐受恶劣条件的能力,并且在膜破裂时表现出更快的孔闭合动力学。这使得混合 DS 能够与天然膜成分(包括成孔肽、结构导向脂质和聚糖)一起制造,以创建筏状结构域或洋葱囊泡。此外,z-DS 还可用于创建具有类似生命特征的活性合成细胞,这些特征可以模拟囊泡融合和运动以及环境感应。尽管 z-DS 具有完全合成的特性,但它是最小的细胞模拟物,可以与生命物质整合和相互作用,并具有模拟类似生命特征及其他特征的可编程性。
生物纳米孔是在单分子水平上检测生物分子的强大工具,使它们成为生物样品的传感器。然而,在存在生物液的情况下,纳米孔居住的脂质膜可能不稳定。在这里,用两亲聚合物PMOXA-PDMS-PMOXA和PBD-PEO形成的膜被测试为纳米孔传感的潜在替代方法。我们证明,聚合物膜可以具有增加对应用电位和高浓度的人血清的稳定性,但是稳定的广泛生物纳米孔的插入最常受到损害。另外,杂种聚合物脂质膜包含PBD 11 PEO 8和DPHPC的1:1 W/W混合物,在为所有经过测试的纳米孔创造合适的环境时,表现出较高的电气和生化稳定性。分析物(例如蛋白质,DNA和糖)有效采样,表明在杂化膜中,纳米孔显示出类似天然的特性。分子动力学模拟表明,脂质形成了由聚合物基质散布的12 nm结构域。纳米孔被分配到这些脂质纳米域和隔离的脂质中,可能具有与天然双层中相同的结合强度。这项工作表明,在[PBD 11 PEO 8 + DPHPC]膜中使用纳米孔进行的单分子分析是可行的,并且在人血清存在下呈现稳定的记录。这些结果为新型纳米孔生物传感器铺平了道路。
PAH1 编码的磷脂酸 (PA) 磷酸酶是生产储存脂质三酰甘油的主要二酰甘油来源,也是酿酒酵母中从头合成磷脂的关键调节剂。Pah1 的催化功能取决于其膜定位,这是通过多种蛋白激酶的磷酸化和 Nem1-Spo7 蛋白磷酸酶复合物的去磷酸化来介导的。全长 Pah1 由催化核心(N-LIP 和 HAD 样结构域、两亲螺旋和 WRDPLVDID 结构域)和非催化调节序列(内在无序区域、RP 结构域和酸性尾部)组成,用于磷酸化和与 Nem1-Spo7 相互作用。催化核心如何调节 Pah1 定位和细胞功能尚不清楚。在本研究中,我们分析了 Pah1 的一种变体(即 Pah1-CC(催化核心)),它仅由催化核心组成。在低拷贝质粒上表达的 Pah1-CC 无需 Nem1-Spo7 即可补充 pah1 Δ 突变体表型(例如核/ER 膜扩张、三酰甘油水平降低和脂滴形成)。Pah1-CC 的细胞功能由其与膜部分主要相关的 PA 磷酸酶活性支持。尽管 Pah1-CC 具有功能性,但它在蛋白质和酶学特性方面与 Pah1 不同,包括过表达毒性、与热休克蛋白的关联以及 V max 值的显著降低。这些关于 Pah1 催化核心的发现增强了对其膜定位和活性控制结构要求的理解。
摘要本研究的目的是开发hesperidin植物体的配方,表征和体内抗糖尿病评估。使用卵磷脂45毫克制备制剂,精确称重的胆固醇15 mg,将其溶解在10 mL氯仿中,在圆底烧瓶(RBF)中,并进行10分钟的浴室超声处理。使用旋转蒸发器将有机溶剂除去45-50摄氏度。完全去除溶剂后形成的磷脂混合物薄层。Hesperidine旋转蒸发器用于在37-40°C下进行一小时的水合。透射电子显微镜用于检查植物体的形态。被应用于400个网状碳涂层的铜网格后,使用1%W/V磷酸烟酸对植物体分散剂进行负染色。使用Malvern Mastersizer S Laser衍射尺寸分析仪(Malvern Instruments Ltd.,UK)检查植物体的尺寸分布。使用文献中先前描述的方法,评估了体内抗糖尿病活性。Wistar大鼠,并将其保存在动物屋设施中,并带有12小时的浅色和黑暗周期。使用自动异性腔中的诊断试剂盒(ERBA诊断曼海姆,德国)用于估计生化参数。选择F1和F2批次作为最佳配方,然后根据形态(数字照片和TEM),粒径和封装效率进行进一步评估。囊泡范围从100 nm到500 nm不等。F1和F2植物体的平均大小分别为109.71和133.24 nm。在某些地区,胰岛和腺泡细胞(外分泌组织)之间的外围扩大较小。现在,两个单元都彼此接近,表明恢复正常。总而言之,基于植物体的公式可能是提高治疗功效,较低剂量和增强剂量方案的有用策略。为了要求其抗糖尿病特性,必须确认更多涉及人类受试者的研究。关键字:配方,表征,体内,抗糖尿病评估,hesperidin,植物体如何引用本文:Borkar S,Swapnil Goyal。配方,发育,表征和体内抗糖尿病植物体的抗糖尿病评估。国际药物输送技术杂志。2024; 14(4):2244-48 doi:10.25258/ijddt.14.4.41支持来源:nil。利益冲突:无引入,而“有些”是指类似细胞的,“ phyto”是指植物。1植物体是囊泡药物输送系统,可改善低溶剂的药物吸收和生物可利用性。1,2植物提取物和磷脂酰胆碱(或任何亲水极性头组)对形成植物体反应,它们是磷脂的复合物,并且天然存在的活性植物化学物质结合在其结构中。3,4与常见制剂相比,这些配方显示出更好的药理和药代动力学特征。亲水性植物核酶 - 胆碱络合物完全被脂溶性磷脂酰基部分覆盖。),例如多酚。高药物封装,更好的稳定性(在两亲分子的植物构成和极性头部之间形成化学键,5和改善的生物利用度6只是植物体的令人印象深刻的优势。唯一可以掺入植物体结构的植物化学物质是包含活性氢原子(-COOH,-OH,-NH2,-NH等)的植物化学物体。两亲分子的亲水部分和草药衍生物可以建立与
摘要:光引起的n = n双键异构化的偶氮元素位于众多应用的核心,从催化,能源储存或药物释放到光遗传学和光电学。While efficient switching between their E and Z states has predominantly relied on direct UV light excitation, a recent study by Klajn and co-workers introduced visible light sensitization of E azoarenes and subsequent isomerization as a tool coined disequilibration by sensitization under confinement (DESC) to obtain high yields of the out-of-equilibrium Z isomer.这种宿主 - 阵线方法仍在高级多组分分子系统中的适用性和功能有限的小型,最小取代的偶氮烯酸含量仍然存在。在此,我们扩展了DESC概念,以引导表面活性剂超分子在空气水接口处。利用可拍摄的芳基唑吡唑两亲物利用我们的专业知识,我们通过可逆的E -Z同源化引起了表面张力和表面过量水的实质性改变。在研究了带电和负电荷的表面活性剂与宿主的结合后,我们发现两种异构体的可见光照射时表面活性差异的程度与直接UV光激发观察到的态度相当。该方法在较大的浓度(从µm到M m)上进行了证明,并且可以使用绿色或红光同样激活,具体取决于选择的敏化剂。在复杂的分子网中,可见光的光电开关敏化的直接实现 - 展示了DESC如何改善现有光响应系统的改善,并允许开发新型应用程序,专门用可见光驱动。
简介:肿瘤缺氧和入侵对光动力疗法(PDT)在三阴性乳腺癌(TNBC)中的功效提出了重大挑战。这项研究开发了一种线粒体靶向策略,该策略将PDT和基因治疗相结合,以相互促进并应对挑战。方法:带正电荷的两亲材材料三苯基二苯基 - 生育酚聚乙烯乙二醇琥珀酸酯(TPP-TPGS,TPS)和光敏剂氯化物E6(CE6)由Hydropolopic Itsaction形成TPS@CE6纳米颗粒(NPS)。他们静态凝结的microRNA-34A(miR-34a)形成稳定的TPS@CE6/miRNA NP。结果:首先,CE6破坏了溶酶体膜,然后通过TPS@CE6/miRNA NPS成功递送miR-34a。同时,miR-34a减少了ROS耗竭并进一步增强了PDT的有效性。因此,PDT和基因治疗之间的相互促进导致抗肿瘤作用增强。此外,TPS@CE6/miRNA NP通过下调caspase-3促进了凋亡,并通过下调N-钙粘着蛋白来抑制肿瘤细胞迁移和侵袭。此外,体外和体内实验表明,TPS@ce6/miRNA NP达到了出色的抗肿瘤作用。这些发现强调了通过PDT和基因治疗的协同作用增强的抗癌作用和肿瘤细胞迁移的降低。结论:综上所述,CE6和miR-34a的靶向共递送将促进光动力和基因纳米医学在治疗侵袭性肿瘤(尤其是TNBC)中的应用。关键词:光动力疗法,基因疗法,缺氧,入侵,线粒体靶标,三阴性乳腺癌
Brad Lokitz纳米相材料科学中心,橡树岭国家实验室,橡树岭,田纳西州摘要(在12 pt Arial字体中)(oak ridge国家实验室(OAK RIDGE)国家实验室(ORNL)的纳米载体材料科学中心(CNMS),为国家和国际用户提供了NAN NAN NAN的范围,包括NAN NAN NAN NAN NAN SOUPENT,纳米制作,成像/显微镜/表征以及理论/建模/仿真。用户加入了一个充满活力的研究社区,该社区汇集了ORNL研究人员,技术支持人员,学生,博士后研究员以及合作的客座科学家。该计划适合短期和长期协作研究项目。访问是通过简短的同行评审提案获得的,对于打算在开放文献中发布结果的用户,无需收取任何费用。在这次演讲中,我将重点介绍签名功能,研究重点领域以及如何通过提案过程访问CNM。主持人的传记(在12点Ariel字体中)布拉德·洛基兹(Brad Lokitz)是Oak Ridge国家实验室的纳米相材料科学中心(CNMS)的大分子纳米材料科学中心(CNMS)的大分子纳米材料小组的高级技术人员。Brad获得了Millsaps College的化学学士学位和博士学位。在查尔斯·麦考密克(Charles McCormick)博士的指导下,密西西比州南部分校的聚合物科学与工程学博士学位。在获得博士学位时,他合成了能够组装成胶束和囊泡的两亲块共聚物。然后,他在散布中子源的博士后研究人员与约翰·安克纳(John Ankner)博士和迈克·基尔比(Mike Kilbey)教授一起工作了两年,以中子反射测定法研究了聚合物薄膜的结构。他自己的研究集中于高级聚合物合成和表征技术,重点是使用中子检查反应性聚合物薄膜和多块共聚物中的结构 - 特性关系。
摘要 微生物脂肽由非核糖体肽合成酶合成,由疏水脂肪酸链和亲水肽部分组成。这些结构多样的两亲分子可以与生物膜相互作用并具有各种生物活性,包括抗病毒特性。本研究旨在评估 15 种不同脂肽对严重急性呼吸综合征冠状病毒 2 (SARS-CoV-2) 的细胞毒性和抗病毒活性,以了解它们的构效关系。非离子脂肽的细胞毒性通常比带电脂肽更强,阳离子脂肽的细胞毒性低于阴离子和非离子变体。在 100 µg/mL 时,六种脂肽将受感染的 Vero E6 细胞中的 SARS-CoV-2 RNA 降低至无法检测到的水平,而另外六种脂肽实现了 2.5 至 4.1 个对数的减少,三种没有显着影响。表面活性素、白线诱导因子 (WLIP)、芬尤金和卡泊芬净成为最有前途的抗 SARS-CoV-2 药物。详细分析显示,这四种脂肽影响了病毒生命周期的各个阶段,包括病毒包膜。表面活性素和 WLIP 显著降低了复制试验中的病毒 RNA 水平,与中和血清相当。表面活性素独特地抑制了病毒出芽,而芬尤金影响了感染前细胞治疗后的病毒结合。与其他药物相比,卡泊芬净的抗病毒作用较低。确定了影响脂肽细胞毒性和抗病毒活性的关键结构特征。含有大量氨基酸的脂肽,尤其是带电(优先为阴离子)氨基酸,表现出强大的抗 SARS-CoV-2 活性。这项研究为设计具有低细胞毒性和高抗病毒功效的新型脂肽铺平了道路,可能带来有效的治疗方法。