在正方形晶格上的半填充一轨式哈伯德模型中,我们研究了使用基于基于蒙特利亚的 +蒙特 - 卡洛方法对模拟过程的精确型 - 型号 +基于蒙特 - 卡洛的方法在有限的温度下跳跃对单粒子光谱函数的影响。我们发现,在néel温度t n和相对较高的温度尺度t ∗之间存在的伪ap状倾角,沿高象征性方向以及沿正常状态的福利表面沿孔和颗粒激发能量中有显着的不对称能量。从(π/ 2,π/ 2)沿正常状态费米表面移动到(π,0)时,孔驱引气能量增加,这种行为与在高t c库酸酯的d波状态和伪gap阶段非常相似,而粒子示出能量的行为降低。Quasiparticle峰高度是最大的(π/ 2,π/ 2),而它是靠近的小(π,0)。这些光谱特征在t n之外生存。温度窗口t n t n t≲t ∗随着下一个最新的邻居跳跃的增加而缩小,这表明下一个最新的邻居跳跃可能不支持PseudoGap-like特征。
b'let g =(v,e)是一个简单,无方向性和连接的图。A con- nected dominating set S \xe2\x8a\x86 V is a secure connected dominating set of G , if for each u \xe2\x88\x88 V \\ S , there exists v \xe2\x88\x88 S such that ( u, v ) \xe2\x88\x88 E and the set ( S \\ { v })\ xe2 \ x88 \ xaa {u}是G的主导集。由\ xce \ xb3 sc(g)表示的安全连接的g的最小尺寸称为g的安全连接支配数。给出了图G和一个正整数K,安全连接的支配(SCDM)问题是检查G是否具有最多k的安全连接的统治组。在本文中,我们证明SCDM问题是双弦图(弦弦图的子类)的NP完整图。我们研究了该问题的复杂性,即两分图的某些亚类,即恒星凸两分部分,梳子凸两分部分,弦弦两分和链图。最小安全连接的主导集(MSCD)问题是\ xef \ xac \ x81nd在输入图中的最小尺寸的安全连接的主导集。我们提出a(\ xe2 \ x88 \ x86(g)+1) - MSCD的近似算法,其中\ xe2 \ x88 \ x86(g)是输入图G的最大程度)对于任何\ xc7 \ xab> 0,除非np \ xe2 \ x8a \ x86 dtime | V | o(log log | v |)即使对于两分图。最后,我们证明了MSCDS对于\ Xe2 \ x88 \ x86(g)= 4的图形是APX-Complete。关键字:安全的统治,复杂性类,树宽,和弦图。2010数学主题classi \ xef \ xac \ x81cation:05c69,68q25。
量子系统可以具有非古典相关性,这些相关已成为量子物理学的内在部分[1]。尤其是纠缠一直是一项密集研究的主题[2,3]。通常,如果不能将其作为产品状态的凸组组合写成,则多粒子系统会纠缠。对于许多应用程序,两分量子状态被认为是关键资源[4,5]。在光子的情况下,可以在各种自由度之间检测到纠缠,例如极化,空间或时间。极化输入的光子已在量子信息方案中实现,例如量子密钥分布(QKD)[6],超密集编码[7],量子触发[8],量子计算[9],量子干涉光学量表[10]等有很多方法可以产生极化的光子对,例如自发参数下调[11]或自发的四波混合[12]。量子状态断层扫描(QST)是量子信息理论发展的固有的。任何协议都需要特征良好的量子状态。在许多应用中,在许多应用中,确定物理系统准确数学表示的能力起着核心作用[13 - 16]。尤其是,由于涉及单个光子的实验的巨大潜力,光子断层扫描引起了很多关注[17]。因此,在目前的工作中,我们