[42] Ra Y S,Dufour A,Walschaers M等。多模光场的非高斯量子状态[J]。自然物理学,2020,16(2):144-147。[43] Asavanant W,Yu S,Yokoyama S等。生成时间 - 域 - 多路复用两个维群集状态[J]。Science,2019,366(6463):373-376。[44] Larsen M,Guo X,Breum C等。确定性生成两个维簇状态[J]。Science,2019,366(6463):369-372。[45] Aasi J,Abadie J,Abbott B P等。使用挤压的光态[J]增强了LIGO重力波检测器的灵敏度。自然光子学,2013,7(8):613-619。[46] Yonezawa H,Furusawa A.连续 - 可变的量子信息处理,挤压光态[J]。光学和光谱学,2010,108(2):288-296。[47] Takeda S,Furusawa A.朝向大 - 比例断层 - 耐受性光子量子计算[J]。APL Photonics,2019,4(6):060902。[48]秦忠忠,王美红,马荣,等。压缩态光场及其应用研究[J]。激光与光电子学进展,2022,59(11):1100001。QIN Z Z,Wang M H,Ma R等。挤压光及其应用的进展[J]。激光和光电进度,2022,59(11):1100001。[49] Mari A,Eisert J.阳性Wigner函数呈现量子计算有效的经典模拟[J]。物理评论来信,2012,109(23):230503。[50] Xiang Y,Kogias I,Adesso G等。物理评论A,2017,95(1):010101。多部分高斯转向:一夫一妻制约束和量子加密应用[J]。[51] Xiang Y,Liu S H,Guo J J等。分销和
量子控制隐形传态是在第三方监督下进行的量子态传输。本文给出了一种任意两量子比特量子控制隐形传态方案的理论和实验结果,其中发送者Alice只需要进行两次贝尔态测量,而接收者Bob可以在监督者Charlie的控制下进行适当的幺正运算来重建任意两量子比特态。在IBM量子体验平台上验证了该方案的运行过程,并通过量子态层析成像进一步检查了传输量子态的准确性。同时,利用理论密度矩阵和实验密度矩阵获得了良好的保真度。引入光子态序列,分析了该方案可能遭受的拦截-替换-重发、拦截-测量-重发和纠缠-测量-重发攻击。结果证明了该方案是高度安全的。
HITRAN2004 论文 [1] 中曾描述过 HITRAN 数据库逐行部分提供的能级或状态的量子数标识。从那时起,许多新分子被添加到 HITRAN 数据库中,并且对某些分子和同位素的格式进行了调整以包含更多信息。下表将概述作为 HITRAN2020 传统(默认)“.par”输出格式(请参阅 www.hitran.org/lbl/ )的一部分提供的量子数格式(截至 HITRAN2020 [2])。应当注意,“.par”是固定长度的 ASCII 格式;因此,一些分子需要单独的解决方案才能在有限的空间内拟合所有可用的量子信息。数据库的关系结构还支持XSAMS格式(解释见http://www.vamdc.org/documents/cbc-1.0/),可以通过创建自定义输出格式进行检索,并能够存储更详细的量子信息。
摘要:纠缠态的分布是许多量子信息处理协议中至关重要的关键任务。一种常用的量子态分布设置设想在一个位置创建状态,然后通过一些量子通道将其发送到(可能不同的)远程接收器。虽然毫无疑问,也许直观地预料到,纠缠量子态的分布效率低于乘积态,但尚未对这种低效率(即纠缠态和分解态的量子态传输保真度之间的差异)进行彻底的量化。为此,在这项工作中,我们考虑了 n 个独立的振幅衰减通道,它们并行作用,即每个通道局部作用于 n 个量子比特状态的一部分。我们推导出了在初始状态存在纠缠的情况下,最多四个量子比特的乘积态保真度降低的精确分析结果。有趣的是,我们发现真正的多部分纠缠对保真度的影响比双量子比特纠缠更大。我们的结果暗示了这样一个事实:对于更大的 n 量子比特状态,产品状态和纠缠状态之间的平均保真度差异会随着单量子比特保真度的增加而增加,从而使后者成为不太值得信赖的品质因数。
其中 r 是 2 n 维实向量,H 是对称矩阵,称为哈密顿矩阵,不要与哈密顿算子 ˆ H 混淆。矩阵 H 可以假定为对称的,因为其中的任何反对称分量都会增加一个与恒等算子成比例的项(因为 CCR),因此相当于在哈密顿量上增加一个常数。当高阶项不显眼且可忽略不计时,通过二次哈密顿量来建模量子动力学非常常见,量子光场通常就是这种情况。此外,二次哈密顿量在其他实验中也代表了一致的近似,例如离子阱、光机械系统、纳米机械振荡器和许多其他系统。对于相互作用,量子振荡器的“自由”局部哈密顿量 ˆ x 2 + ˆ p 2 (以重新缩放的单位表示)显然是二次的。任何二次汉密尔顿量的对角化都是一个相当简单的数学程序。因为,正如我们将看到的,这种对角化依赖于识别彼此分离的自由度,所以由二次汉密尔顿量控制的系统在量子场论文献中被称为“准自由”。尽管它们的动力学很容易解决,但这样的系统仍然为量子信息理论提供了非常丰富的场景,其中用于分析二次汉密尔顿量的标准方法成为强大的盟友。
摘要。在本文中,我们介绍了最新且进化的两因素身份验证(2FA)访问控制系统专门为基于Web的云计算服务而设计的系统。我们的创新系统涵盖了基于属性的访问控制机制,该机制将用户的秘密密钥与轻量级安全设备结合在一起。我们的系统可显着提高安全性,尤其是在多个用户共享用于基于Web的云服务的单个计算机的情况下,因为访问取决于两个组件的存在。此外,基于属性的管理机制使云服务器能够基于具有相同属性的用户来强制访问约束,同时保持用户机密性保护的最高程度。服务器的验证过程非常集中于验证用户符合必要条件的情况,而无需访问其确切身份。为了进一步确认2FA系统的实用性和实用性,我们进行了深入的模拟,作为我们研究的一部分。
报告对 2023 年 11 月至 2024 年 4 月展望期内全球饥饿和粮食安全危机的 19 亿人进行了调查,共涵盖 22 个国家。4 脆弱环境是当前全球饥饿和粮食安全危机的核心5 :生活在脆弱环境中的人口为 19 亿,占世界人口的 24%,但占世界极端贫困人口的 73% 6 ,其中三分之二目前正面临饥饿7 。《世界粮食不安全状况》报告还显示,无力负担健康饮食的人数持续增加。2021 年,全球有超过 31 亿人(占 42%)无法负担健康饮食,与大流行前的 2019 年相比增加了 1.34 亿人。与此同时,全球营养不良负担对个人和国家的发展、经济、社会和健康产生持续影响。 2022 年,25 亿成年人超重,其中 8.9 亿人患有肥胖症,3.9 亿人体重不足 8 。尽管粮食体系在全球就业中占很大比例,但农业家庭占全球极端贫困人口的三分之二。9 与此同时,粮食体系继续产生土壤、水和空气污染,造成超过三分之一的温室气体排放、高达 80% 的生物多样性丧失和高达 70% 的淡水使用量。10
Neurodegenerative disorders consist of a group of chronic central nervous system disorders with heterogeneity, including Alzheimer ' s disease (AD), dementia with Lewy bodies (DLB), Parkinson ' s disease (PD), multiple sclerosis (MS), multiple system atrophy (MSA), progressive supranuclear palsy (PSP), Huntington ' s disease (HD), etc.,其主要特征是神经元的逐渐丧失。它们是我们社会的重大负担,影响了全球数百万的人(1)。这些患者需要持续和长期的护理,这与重要的经济和社会成本有关。Prince等。估计,到2030年,到2030年,仅全球痴呆症成本将超过2万亿美元(2)。随着世界人口的年龄和预期寿命的增加,对神经退行性疾病的早期诊断和治疗已成为全球公共卫生问题。另一方面,炎症性肠道疾病(IBD)代表了肠道的长期炎症性疾病,包括克罗恩病(CD)和溃疡性结肠炎(UC),其确切的触发因素尚未确定(3)。随着兴趣的增长,IBD对公共医疗保健系统施加了巨大的财务压力,并提出了全球医疗保健挑战(1,4)。胃肠道疾病与中枢神经系统功能障碍之间的二方调节有大量证据,通常称为“肠脑轴”理论(5)。迄今为止,几个以前的元分析研究了IBD与一种特定神经退行性疾病的发生率之间的关系(7-10)。肠道细菌和慢性肠道炎症的障碍可能导致全身性弹性反应,损害血脑屏障,刺激神经素抑制过程,并最终增加Neurodegeneration疾病的发生率(6)。这些研究表明,IBD与神经退行性疾病之间存在前瞻性联系,表明可能存在前瞻性关联。但是,他们的大多数研究不仅限于包括的研究类型,因此经常汇总横断面,病例对照和纵向研究的结果。鉴于病例控制研究设计的固有不足,需要回顾性收集潜在的暴露危险因素,因此神经退行性疾病会极大地影响报告的准确性。此外,横截面和病例对照研究
Kern* Anthem Blue Cross伙伴关系计划 - HCP 379 Kaiser Permanente - HCP 366 KERN家庭健康计划 - HCP 303 Kings* Anthem Blue Cross伙伴关系计划 - HCP 363 Calviva Health - HCP 316 HCP 316 KAISER EMANTERE - KAISER PORMANETE - KAISER EMANTERE - KAISER EMANTER -HCP 367 LOS LOS WARTEN and PLANENS -LOS GALLES LA CARNENS和PLANSNERS HC CARES and HCENS -HCP -304 352 Kaiser Permanente – HCP 368 Madera* Anthem Blue Cross Partnership Plan – HCP 364 CalViva Health – HCP 317 Kaiser Permanente – HCP 369 Riverside* Inland Empire Health Plan – HCP 305 Kaiser Permanente – HCP 370 Molina Healthcare – HCP 355 San Bernardino* Inland Empire Health Plan – HCP 306 Kaiser Permanente – HCP 371 Molina Healthcare – HCP 356 San Francisco Anthem Blue Cross Partnership Plan – HCP 343 Kaiser Permanente – HCP 372 San Francisco Health Plan – HCP 307 San Joaquin Health Plan of San Joaquin – HCP 308 Health Net – HCP 354 Kaiser Permanente – HCP 373 Santa克拉拉*国歌蓝色十字伙伴关系计划 - HCP 345 Kaiser Permanente - HCP 374 Santa Clara家庭健康计划 - HCP 309 Stanislaus Health Net NET - HCP 361 San Joaquin的健康计划 - HCP HCP - HCP HCP 312 KAISER PORMANETE - KAISER PORMANENE - HCP 375 TULARE* ANTHEM BLUE CRANT PLAN -33 ANTHEM BLUE CRANK PARMEN -HC 33 HCHC 33 33 Kaiser Permanente - HCP 376 ››