中国“墨子号”卫星建立了首个洲际量子加密服务。研究人员通过在欧洲和中国之间建立安全视频会议测试了该系统。这个过程很简单。量子加密依靠所谓的一次性密码本来保证隐私。这是一组随机数(密钥),双方可以使用它来编码和解码消息。一次性密码本的问题在于确保只有选定的发送者和接收者拥有它们。这个问题可以通过使用光子等量子粒子发送密钥来解决,因为总是可以判断量子粒子是否之前被观察到。如果已经观察到,则放弃该密钥并发送另一个密钥,直到双方都确定他们拥有未被观察到的一次性密码本。量子密钥分发是量子加密的核心。双方拥有密钥(即一次性密码本)后,他们可以通过普通经典信道进行绝对安全的通信。墨子号卫星只是从轨道上分发这个密钥。由于卫星位于两极上方的太阳同步轨道上,因此它每天大致在相同的当地时间经过地球表面的各个角落。假设当卫星经过位于中国河北省北部兴隆的中国地面站时,它会使用成熟的协议将一次性密码本以单光子编码发送到地面。当地球在卫星下方旋转,奥地利格拉茨的地面站进入视野时,墨子号会将相同的一次性密码本发送到那里的接收器。这样,两个地点就拥有了相同的密钥,使它们能够通过传统链路启动完全安全的通信。实验甚至更进一步。如果目标是在北京的中国科学院和维也纳的奥地利科学院之间举行视频会议,那么密钥必须安全地分发到这两个地点。为此,研究小组使用基于地面的光纤量子通信。这样建立的视频链路由高级加密标准 (AES) 保护,该标准每秒通过 128 位种子代码刷新一次。 9 月,他们举行了一场开创性的视频会议,会议持续了 75 分钟,总数据传输量约为 2 GB。“我们展示了地球上多个地点之间的洲际量子通信,最大间隔为 7,600 公里,”由维也纳大学的 Anton Zeilinger 和中国合肥中国科学技术大学的潘建伟领导的团队表示。该系统存在一些潜在的弱点,未来有待改进。也许最重要的是,在连接两个地面站的时间内,卫星被认为是安全的。这很可能是真的——谁能入侵一颗在轨道上运行的卫星?但是,这种安全性无法得到保证。然而,研究团队表示,未来可以通过端到端量子中继来解决这一问题。各国政府、军事运营商和商业企业都渴望拥有类似的安全能力。1
气候变化可以直接(例如,暴露于极端温度)和间接(例如,感染性疾病生态学的变化)以复杂的方式影响人类健康,并由生物学,生态和社会经济因素的多种多样而复杂。媒介传播疾病(VBD)的传播是高度复杂和多因素的,并且受到生物学,生态,社会经济,人口统计学和人类引起的多种多样的影响,包括气候,迁移,全球贸易和旅行,包括许多Others。尽管气候是几个驱动因素之一,但它被认为是影响VBD分布的主要环境因素。气候变化加剧了向量和病原体的风险和负担,并使它们的引入和分散到新区域[1]。解散载体(主要是蚊子和壁虱)依赖于外部热源来维持其温度在功能极限内。因此,气候条件是载体的生理,生态,发展和行为的主要决定因素,并且还影响病原体生命周期中的生物学过程[1,2]。当温度升高时,这些生物过程可能会加速。例如,在热浪期间,高温增加了女性蚊子的咬合率。由于疾病向人类传播发生在血液进食期间,因此较高的咬合率导致疾病的发病率更高[2]。疟疾和登革热仍然引起人们的关注,2019年全球每100,000人口为2022年的2.49亿疟疾病例[4]和740.4例登革热病例[5]。尽管气候变量与VBD传播之间的相互作用是复杂的,通常是非线性的,并且在不同的矢量/病原体组合之间变量,但有明确的证据支持气候变化与VBD传播之间的关联[3]。但是,近年来发生了大幅下降,这可能归因于经济发展和公共卫生干预的成功。在2000年至2019年之间,疟疾病例的发病率从全球范围内的81人减少到每1000人的风险,疟疾死亡人数减少了三分之一。增加了对双重成分杀虫剂处理的床网的使用,改善了诊断测试,并扩大了对基于青蒿素的联合疗法的机会,这导致了这种下降[4]。这些成就表明了减少传染病传播的能力,并突出了最终归因和量化临床变化的影响的困难,这是影响VBD传播的许多复杂因素之一。气候变化是VBD地理分布扩展的一个因素,因为较温暖的条件有助于在新地区建立向量。急切地,热带物种朝着两极扩散,并且由于温度升高而建立在更高海拔的情况下。因此,我们现在观察到疾病向量扩散到新的,包括非流行区域,由于栖息地的改善(较温暖)的适合性[6]。病原体可以通过旅行,贸易或移民分散到非流行区域,
您需要了解有关流量电池背景信息的信息:电池存储的工作原理是电池存储是存储电能的设备。因此,电池内接收的电能被转化为化学能,并存储在其化学(电解质)中。一种称为氧化还原反应的化学反应发生在电池内部,将相关物质或反应伴侣转换为具有不同化学势的其他伴侣。这些化学物质将能量储存到需要为止。当请求能量时,启动了反向的氧化还原反应,并以电力形式从电池中出来。该过程非常容易。如果将外部电压应用于电池的两极(即连接电路),其电压比电池电压高,然后能量进入;电池充电。如果外部电路施加的电压低于电池电压,则能量会出来并且电池被放电。流量电池的历史记录并非所有用于流动电池的解决方案都具有相同的技术效果。流量电池的概念化学概念已于1879年在美国获得了专利,并在1950年代在德国与金属离子合作,NASA于1970年代从事这项技术,并在1980年代由新南威尔士大学的Maria Skyllas-Kazacos在1980年代颁发了All-Vanadium RFB。,至少它的电解质仍在运行,据我们所知,正好在运行30多年后,其电解质仍在运行。正好在运行30多年后,其电解质仍在运行。通常,钒氧化还原流量电池是最发达的,因此是最成熟的氧化还原流化学反应,流量电池的独特之处是什么?流量电池具有化学电池基础。在大多数流动电池中,我们发现两个液化电解质(解决方案),这些电解质(解决方案)流过能量转换的区域。此电解质不放置在此“电池主体”中,可以存放在单独的坦克中。与典型的电池相反,流量电池不仅由一个车身组成(想想您的手表或手机使用的电池),而不是我们有堆栈(能量转换发生能量转换的电池的布置),电解液罐,用能将电解质储存的能量与它们所包含的能量一起使用,并用泵与储存的电解液一起循环电解系统,并与他们的能量循环。该系统的美感避免了许多标准电池不利的,以“不灵活的设计”绑定。为什么需要流量电池?脱碳需要间歇性的可再生能源,这需要大量的能量存储才能应对这种间歇性。流动电池在能源处理设计方面提供了新的自由。流量电池概念允许独立调整电力并独立存储能源能力。这是有利的,因为通过将功率和容量调整到所需的需求,可以降低存储系统的成本。此外,在大多数氧化还原流量电池中,功率和容量的独立可伸缩性导致了有关每千瓦时成本的扩展效果。换句话说:与其他电池相比,kWh的翻倍并不是成本的两倍!This is a very important advantage of flow batteries for the combination with renewables.
[本文的原始德文版本于 2022 年 3 月 20 日作为德国周日报纸 Welt am Sonntag 经济版 AI 专栏“Aus dem Maschinenraum der KI”的一部分出现,第 24 页。][使用 www.DeepL.com/Translator(免费版)翻译 - 欧洲制造的 AI 技术,请参阅 https://en.wikipedia.org/wiki/DeepL_Translator ,随后由作者进行润色和修改。]AI 中的理论永无止境!人工智能依靠假设、理论和数据蓬勃发展。你知道 1968 年斯坦利·库布里克的《2001:太空漫游》吗?就像《星球大战》或《公民凯恩》一样,这部电影已经成为我们流行文化的一部分,邪恶的计算机 HAL 也是如此。HAL 是一种人工智能 (AI),仍然是我们对 AI 的所有希望和恐惧的原型:HAL 聪明、狡猾,控制着发现一号宇宙飞船上的所有系统。而且它是有意识的。如果您没有听说过 HAL,您可能熟悉《2001:太空漫游》著名的开场片段,其中太阳从地球和月亮上方升起,伴随着理查德施特劳斯的《查拉图斯特拉如是说》(原作德文标题“查拉图斯特拉如是说”)。这是对德国哲学家弗里德里希·尼采的同名诗作的暗示。AI 经常让我想起尼采。为什么?《查拉图斯特拉》表现出尼采的极端倾向。根据德国文学评论家丹尼斯·谢克的说法,“在温和的地区没有调解或思考。”山谷与山顶,强者。弱者,超人(英文。“Übermensch”)与普通人。实际上,《查拉图斯特拉》的副标题是“一本为所有人和无人而写的书”。在公众话语中,人工智能要么被视为救世主,要么被视为人类的堕落。这种极端的两极观点是完全错误的,而且确实对任何人都有帮助。人工智能是一门科学,也是一种工具。不多也不少。我们需要细致入微的讨论!不幸的是,尼采在这里帮不了我们。他确信没有因果关系,相反,生活只是“事物和状态的偶然并置”。如果尼采是对的就好了!我会立即剃光头!因为,对于男性来说,很容易观察到收入和头发数量之间的高度“负相关性”:头发越少,钱越多。然而,实际上,没有一次去理发店让我变得更富有!年龄越大,头发越少。男人只是在变老。从统计学上讲,年龄越大,收入越高。另一方面,身高和体重是“正相关的”,因为它们的行为方式相同:随着成长,体重增加。事实上,这可能并不适用于我们每个人,但总的来说,这是正确的。当前的机器学习算法非常擅长寻找相关性。它们不太擅长告诉我们原因和结果:这是否导致了那里的那个?如果我这样做会怎样?这就是为什么人们对人工智能重新产生了浓厚的兴趣,研究因果关系
部分 - I:基础研究方法I.数学方法特殊功能(Hermite,Bessel,Laguerre和Legendre功能)。傅立叶系列,傅立叶和拉普拉斯变换。复杂分析,分析函数的要素; Taylor&Laurent系列;两极,残留和积分评估。II。 经典力学中心力动作。 两次身体碰撞 - 散射在实验室和质量框架中心。 僵硬的惯性张量的刚体动力学。 非惯性框架和伪构造。 最少动作的原则。 广义坐标。 约束,拉格朗日和哈密顿的形式主义以及运动方程。 保护法律和循环坐标。 泊松支架和规范转换。 周期性运动:小振荡,正常模式。 相对论的特殊理论 - 洛伦兹转化,相对论运动学和质量 - 能量等效性。 iii。 电磁理论静电学:高斯定律及其应用,拉普拉斯和泊松方程,边界价值问题。 磁静态学:生物 - 萨瓦特定律,安培定理。 电磁诱导。 麦克斯韦的方程式和线性各向同性介质中的方程;接口处的字段上的边界条件。 标量和矢量电势,量规不变性。 在自由空间中的电磁波。 电介质和导体。 反射和折射,极化,菲涅尔定律,干扰,连贯性和衍射。 iv。 穿过障碍物。II。经典力学中心力动作。两次身体碰撞 - 散射在实验室和质量框架中心。僵硬的惯性张量的刚体动力学。非惯性框架和伪构造。最少动作的原则。广义坐标。约束,拉格朗日和哈密顿的形式主义以及运动方程。保护法律和循环坐标。泊松支架和规范转换。周期性运动:小振荡,正常模式。相对论的特殊理论 - 洛伦兹转化,相对论运动学和质量 - 能量等效性。iii。电磁理论静电学:高斯定律及其应用,拉普拉斯和泊松方程,边界价值问题。磁静态学:生物 - 萨瓦特定律,安培定理。电磁诱导。麦克斯韦的方程式和线性各向同性介质中的方程;接口处的字段上的边界条件。标量和矢量电势,量规不变性。在自由空间中的电磁波。电介质和导体。反射和折射,极化,菲涅尔定律,干扰,连贯性和衍射。iv。穿过障碍物。静态和均匀电磁场中带电颗粒的动力学。量子力学波颗粒偶性。schrödinger方程(时间依赖性和与时间无关)。特征值问题(盒子中的粒子,谐波振荡器等)。坐标和动量表示中的波函数。换向者和海森伯格的不确定性原则。dirac表示法。运动中心的运动:轨道角动量,角动量代数,自旋,添加角动量;氢原子。船尾 - 盖拉赫实验。
尽管它占据了宇宙空间的 99% 以上,但在地球上也只能看到极光等罕见现象。这种现象发生在两极,是由于来自太阳风的电子受到地球磁力加速并与大气中的原子碰撞而产生的。在这种相互作用中,包括原子的电离和激发在内的一系列事件形成了不同能量状态的物质“沙拉”。这种物质“沙拉”不符合热力学平衡,具有与周围环境重新结合的能量。1928 年,人们提出了这种物质的第四种状态,并称之为等离子体[ 1 ]。然而,直到第二次世界大战之后,研究人员才开始对人造等离子体的形成及其对人类的潜在益处产生兴趣。起初,人们竞相开发用于热核聚变的等离子体,即在极低的压力下产生等离子体,然后利用强磁场进行受控核聚变[ 2 ]。随后,在 20 世纪 70 年代,等离子体技术开始了更加深入的研究,不仅在电子工业,而且在航空航天、汽车、冶金、钢铁、生物医学、纺织、光学和造纸工业也得到了广泛的应用[3-10]。这些技术大部分使用低压冷等离子体,即电子能量远大于等离子体中其他粒子平均能量的等离子体,而炼钢等应用则使用热等离子体,其中系统接近平衡,即电子能量与其他物质的能量大致相同。由于产生等离子体所需的压力较低,这些冷等离子体技术在使用上受到限制。除了尺寸限制之外,还有其他因素,例如需要处理的产品具有低蒸汽压,从而在加工过程中保持其完整性。一种可在大气压下使用并保持等离子体低温的技术,即允许电子与其他物质发生高能碰撞的非平衡特性,使环境保持低温。这种技术在聚合物、液体和活组织等热敏感材料的应用方面具有很大的吸引力[11,12]。过去 20 年的研究正在不断发展,被称为冷大气等离子体(或冷大气压等离子体 PFA)。它们主要应用于健康领域,如伤口愈合、血液凝固、龋齿消毒和改变哺乳动物细胞功能,并有可能用于新的癌症治疗[13-17]。在农业中,它可用于刺激植物生长和减少病原体、种子发芽、水果生物活性表面的净化以及收获后的净化[18-23]。在环境领域,它可用于环境、液体和固体的净化、水处理、染料降解等[24, 25]。在巴西,该技术仍很少得到应用和普及。一些使用它的研究中心以孤立和不系统的方式进行研究。 2020 年 2 月 8 日在 CNPq 研究目录中进行的搜索表明,巴西有 10 个研究小组的名称中带有“等离子体”一词,其中只有 02 个研究小组的名称中包含“大气等离子体”或“冷等离子体”一词。俄罗斯半干旱地区联邦乡村大学(UFERSA)自 2012 年以来一直致力于开展大气冷等离子体在农业、健康和环境领域的应用研究,并取得了有趣且前所未有的成果。考虑到该研究的低成本和相关性,以及其多学科、创新和跨部门集成的性质,该技术的传播可能是其在其他研究机构和国家工业中传播的重要一步。凭借我们过去 8 年积累的经验,我们将能够接近农业、卫生和
博士学位课程大纲。入学考试I.物理尺寸分析,载体代数和载体计算,线性代数,矩阵,特征值和特征向量的数学方法。一阶和二阶,傅立叶和拉普拉斯变换的线性普通微分方程。复杂分析,分析函数的要素; Taylor&Laurent系列;两极,残留和积分评估。基本概率理论,随机变量,二项式,泊松和正常分布。中央限制定理。II。 古典力学牛顿的定律,动力学系统,相位空间动态,稳定性分析,中心力运动,两次身体碰撞 - 在实验室和质量框架的中心散射,僵化的身体动态 - 惯性张力的力矩,非惯性框架,非惯性框架,非惯性框架和伪型,伪造,劳拉氏疗法和方程式,律师和方程式,方程式,方程,方程,方程,方程,方程式,方程式,方程式,方程,周期性运动:小振荡,正常模式,相对论 - 洛伦兹转化的特殊理论,相对论运动学和质量 - 能量等效性。 iii。 电磁理论静电学:高斯定律及其应用,拉普拉斯和泊松方程,边界价值问题。 磁静态学:生物 - 萨瓦特定律,安培定理。 电磁诱导。 自由空间和线性各向同性介质中的麦克斯韦方程。 在自由空间中的电磁波。 电介质和导体。 反射和折射,极化,菲涅尔定律,干扰,连贯性和衍射。 iv。II。古典力学牛顿的定律,动力学系统,相位空间动态,稳定性分析,中心力运动,两次身体碰撞 - 在实验室和质量框架的中心散射,僵化的身体动态 - 惯性张力的力矩,非惯性框架,非惯性框架,非惯性框架和伪型,伪造,劳拉氏疗法和方程式,律师和方程式,方程式,方程,方程,方程,方程,方程式,方程式,方程式,方程,周期性运动:小振荡,正常模式,相对论 - 洛伦兹转化的特殊理论,相对论运动学和质量 - 能量等效性。iii。电磁理论静电学:高斯定律及其应用,拉普拉斯和泊松方程,边界价值问题。磁静态学:生物 - 萨瓦特定律,安培定理。电磁诱导。自由空间和线性各向同性介质中的麦克斯韦方程。在自由空间中的电磁波。电介质和导体。反射和折射,极化,菲涅尔定律,干扰,连贯性和衍射。iv。静态和均匀电磁场中带电颗粒的动力学。量子力学波颗粒二元性,schrödinger方程(时间依赖性和时间无关),特征值问题(盒子中的粒子,谐波振荡器等。),通过屏障,坐标和动量表示的波动功能,换向器和海森堡不确定性原理,状态向量的迪拉克符号,运动中心的运动:轨道角动量,角动量,角度动量代数,自旋,自旋,添加了角臂;氢原子,严格的gerlach实验,时间独立的扰动理论和应用,变分方法,依赖时间的扰动理论和费米的黄金法则,选择规则。相同的粒子,保利排除原理,自旋统计量连接。V. Thermodynamic and Statistical Physics Laws of thermodynamics and their consequences, Thermodynamic potentials, Maxwell relations, chemical potential, phase equilibria, Phase space, Micro- and Macro-states, Micro- canonical, canonical and grand-canonical ensembles, partition functions, Free energy and its connection with thermodynamic quantities, Classical and quantum statistics, Ideal Bose and Fermi gases, Principle of detailed平衡,黑体辐射和普朗克的分布定律,扩散方程,随机步行和布朗运动。