月球表面有太阳能,但夜间时间较长(连续 350 小时)以及从白天到夜晚的极端环境温度变化给太阳能的使用带来了问题。虽然月球两极的阳光更多,但也有不规则的黑暗时期和太阳永远照不到的地方,比如陨石坑内。地球也面临类似的问题,对包括太阳能在内的额外可再生能源发电的需求正在上升,但需要额外的电力管理、分配和能源存储解决方案来解决间歇性和弹性等问题。
太阳光线与收集表面(无论是地球表面还是太阳能电池板的表面)的垂直度越大,能量就越集中,太阳能增益就越大。这种垂直度可以收集更多的太阳能,太阳能电池板可以输出更多的电能,同时地球上接受更多阳光直射的地区温度也会更高。在地球上,加热差异造成了从赤道到两极的气候温度的基本变化。这种温度不平衡导致热能以风的形式从赤道流向两极(包括地表风和大规模行星风)。
乌克兰战争是航天领域新商业模式(新空间)的一次精彩展示,它似乎将美国(尤其是五角大楼)自 2010 年代中期以来领导的适应努力付诸实践。因此,它凸显了正在进行的变革,并预示着轨道开发可能出现断裂,特别是在卫星连接和地球观测领域。它还概述了未来的紧张局势,因为围绕美国和中国两极的国际关系结构加剧了有关太空活动的安全性、可行性、安全性和稳定性的质疑。这些发展对欧洲保持在该领域的重要性提出了挑战。
对环绕声的语义的空间理解是自动驾驶汽车需要安全驾驶决策所需的关键能力。最近,纯粹基于视觉的解决方案已增强了研究的兴趣。在特定的方法中,从多个摄像机中提取鸟类视图(BEV)的方法表现出了很好的空间理解性能。本文介绍了学习的位置编码的依赖性,以将基于变压器的甲基化的图像和BEV特征映射元素关联。我们提出利用外两极的几何约束,以模拟相机注意场与BEV之间的关系。它们被纳入注意机制中,作为一种新的归因术语,是学习位置编码的替代方案。实验表明,与隐式学习摄像机配置相比,我们的方法的大鹰队以2%MIOU的方式优于2%MIOU的BEV方法,并且具有出色的概括能力。
对于“永恒的冰”而言,这么多。两极的融化和北极的温度比全球平均水平快两到三倍。温度较高的温度正在打破海冰,使越来越多的船只穿越西北通道,海上通过北极海洋连接大西洋和太平洋。他们还导致覆盖格陵兰的冰盖遭受了相当大的损失 - 带来了全球后果。冰川融化时,海平面上升。局势的严重程度在2021年8月14日变得明确:那天,格陵兰的高空气象站报道了降雨。这从来没有发生过,只要科学家一直在该站记录天气数据 - 海拔3216次。冰融化在整个岛屿上。在2021年的热浪峰值上,冰盖在一天之内损失了约120亿吨的质量,大约12.5千克。
人类引起的气候变化的现实是明确的,并且会造成不断增长的全球影响。访问有关当前气候变化和投影趋势的最新科学信息对于规划适应措施以及为减少温室气体排放(GHG)的努力而言至关重要。识别危害和风险可能用于评估脆弱性,确定适应的限制并增强对气候变化的韧性。本文强调了最近的研究计划如何继续阐明当前的流程并推进主要气候系统之间的预测,并确定剩余的知识差距。关键发现包括季风降雨的预计增长,这是由于气溶胶的减少降雨效应与降雨增加的温室气体之间的平衡变化所致;加强北大西洋风暴轨道;在两个两极的降雨中,降水的比例增加;厄尔尼诺南部振荡(ENSO)事件的频率和严重程度的增加以及
多年的研究致力于寻找实现这一目标的新的高效系统。在光驱动的CO 2降低中,[4]需要光敏剂(PS)来收集太阳能和催化剂(CAT)以减少二氧化碳。两者都可以是同质的或异质的。添加了牺牲电子供体(E-d)以关闭催化循环并再生光敏剂的基态。在同质系统中,PS和CAT均主要是基于过渡金属的,并且很少基于有机物。,[5],[6] [7],尽管贵金属具有出色的光化学和电化学特性(例如ru,ir,re),使用3D金属的环保替代系统(例如mn,Fe,co,ni)正在变得更有竞争力。[8]通常,3D金属仅表现出两个可能的氧化态,从而导致形成了两极的还原产物,例如一氧化碳,甲醛或甲酸或甲酸。分子氢是相关的,选择性差异很大。CO和H 2作为产品(也称为同性气)的混合物构成了以更生态的方式产生燃料的机会[9],要么是这样(用于燃气涡轮机)[10]或通过进一步的反应(例如产生甲醇)。[11]
一个技术成熟的火星殖民地每年可以生产并运送至少 100 万吨液态氢到一个或多个低地球轨道 (LEO) 的推进剂库。在火星殖民地生产 1 公斤氢气并将其运送到 LEO 需要在火星上消耗 1.4 GJ 的能量。LEO 推进剂库包含在火星上生产的氢气以及在月球或近地小行星上生产的氧气。这种推进剂用于将有效载荷从 LEO 运送到太阳系的许多目的地,包括火星。将 1 公斤有效载荷从 LEO 运送到火星需要在火星、月球和近地小行星上消耗 3.5 GJ 的能量。使用在火星上生产的液态氢将宇航员和有效载荷运送到火星可确保火星殖民地的指数级引导增长。火星殖民地和向 LEO 运送数百万吨液态氢是太阳系殖民的关键。火星殖民地只有发展到相当规模后才会开始向低地球轨道输送液态氢。它的结构和材料中应包含约 2000 万吨钢铁和 300 万吨塑料,以及数千名宇航员。在此之前,低地球轨道氢沉积物将由月球两极的氢气供应。
II。 拓扑在该项目中提出了带有双向直流转换器串联连接的孤立双向DC-DC转换器。 这些软开关转换器可提供高电压增益,并在整个开关中降低电压应力,提供较大的占空比,ZCS的转机和零电流过渡(ZCT),用于所有开关设备的关闭,并在两极的DC总线上提供固有的电压平衡。 设计和实施:主要目的是根据降压/升级转换器拓扑设计和实施双向电池充电器电路。 这涉及选择适当的组件,设计控制算法以及集成安全功能以确保可靠有效的操作。 多功能能源管理:开发能够双向功率流的充电器,使电池充电和放电既可以进行。 电路应有效地处理电池和电池的能源转移,以满足各种充电来源和负载要求。 实时监视和控制:实现一个可靠的控制系统,能够监视关键电池参数,例如电压,电流和温度。 利用反馈机制动态调节充电和排放过程,优化性能并确保电池健康。 安全与保护:整合全面的电池管理系统(BMS),以防止过度充电,过度收费和过电流条件。 实施隔离措施,以确保充电器的输入和输出侧之间的电气安全。 确保易用性和可访问性来增强用户体验。II。拓扑在该项目中提出了带有双向直流转换器串联连接的孤立双向DC-DC转换器。这些软开关转换器可提供高电压增益,并在整个开关中降低电压应力,提供较大的占空比,ZCS的转机和零电流过渡(ZCT),用于所有开关设备的关闭,并在两极的DC总线上提供固有的电压平衡。设计和实施:主要目的是根据降压/升级转换器拓扑设计和实施双向电池充电器电路。这涉及选择适当的组件,设计控制算法以及集成安全功能以确保可靠有效的操作。多功能能源管理:开发能够双向功率流的充电器,使电池充电和放电既可以进行。电路应有效地处理电池和电池的能源转移,以满足各种充电来源和负载要求。实时监视和控制:实现一个可靠的控制系统,能够监视关键电池参数,例如电压,电流和温度。利用反馈机制动态调节充电和排放过程,优化性能并确保电池健康。安全与保护:整合全面的电池管理系统(BMS),以防止过度充电,过度收费和过电流条件。实施隔离措施,以确保充电器的输入和输出侧之间的电气安全。确保易用性和可访问性来增强用户体验。效率优化:采用效率优化技术来最大程度地减少能量损失并最大化充电/放电效率。选择高性能组件并设计转换器拓扑,以在不同的操作条件下进行最佳功率转换。用户友好的接口:开发用于系统监视和控制的用户界面,为用户提供对相关信息和控制参数的访问。