超明显点模式可以通过超均匀缩放指数α> 0进行分类,该指数α> 0,该指数符合结构因子s(k)的幂律缩放行为,这是波数k。| K |在起源附近,例如s(k)〜| K | α在s(k)随着k连续变化为k→0。在本文中,我们表明可传播性是确定s(k)不连续的准膜系统的有效方法,并由一组密集的bragg峰组成。它已在[Phys。修订版e 104,054102(2021)],对于有限α的培养基,可以将过剩可传播性s(∞)-s(t)的长时间行为拟合到形式t - (d-α) / 2的幂定律中,在其中d是空间维度,以准确提取α,以使α准确提取α。我们首先将准二极管和极限 - 周期点模式转换为两相介质,通过将它们映射到相同的非重叠磁盘的包装上,其中与磁盘的空间内部代表一个相位,并且在其外部空间代表了第二阶段。然后,我们计算包装的光谱密度〜χv(k),并最终计算其多余的散布性的长期行为。特别是我们表明,多余的传播性可用于准确提取一维(1D)极限 - 周期性倍加倍链(α= 1)和1D Quasicrystalline fibonacci链(α= 3)至0。02%的分析已知的确切结果。此外,我们获得α= 5的值。97±0。06对于二维penrose瓷砖,并提出了合理的理论参数,强烈表明α完全等于六个。我们还表明,由于此处检查的结构的自相似性,可以截断用于计算散布性并获得α准确值的散射信息的小k区域,并且与未截断的情况下的偏差很小,该案例随着系统尺寸的增加而降低。这强烈表明,可以从适度尺寸的有限样品中获得α的良好估计。此处描述的方法提供了一个简单而通用的过程,可以准确表征Quasrystalline中存在的大规模翻译顺序,并在任何自相似的空间维度中都具有极限 - 周期介质。此外,从编码〜χV(k)中编码的这些两相介质中提取的散射信息可用于估计其物理性质,例如它们的有效动态介电常数,有效的动态弹性常数和流动性。
Simone Mancin 是意大利帕多瓦大学管理与工程系热力学与传热学副教授。他还是伦敦布鲁内尔大学化学工程系的客座教授,也是伦敦布鲁内尔大学能源效率与可持续技术中心的成员。他的研究主要集中在先进材料、纳米沉积、纳米涂层、表面处理、增强表面和微观几何形状中的单相和两相传热,用于电子热管理和空调和制冷以及用于先进潜热能存储的相变材料 (PCM)。他目前是 MSCA、清洁航空地平线欧盟和探路者计划中多个欧盟资助项目的 PI。他是约 250 篇论文的作者或合著者,大部分发表在国际科学期刊上。他是《HEDH》、《热科学与工程过程》、《C部分:机械工程科学杂志》和《热传递研究》的副主编,也是《国际热流体杂志》、《科学谈话》和《能源》的编辑委员会成员。
Liu 等 [36] 在 1950 ℃ 和 50 MPa 压力的 SPS 过 程中,发现随着 TiB 2 的添加量由 5 mol% 增至 30 mol% ,复合陶瓷的硬度降低,断裂韧性增加。 除裂纹偏转和 TiB 2 的钉扎效应使 B 4 C 晶粒细化 ( 从 1.91 μm 减至 1.67 μm) 外,两相间位错的产生, 是 B 4 C 陶瓷增强、增韧的次要原因,其在陶瓷断 裂前吸收能量,造成局部强化 [37–38] 。研究发现, 添加 20 mol% TiB 2 时,复合陶瓷的相对密度为 97.91% ,维氏硬度为 (29.82±0.14) GPa ,断裂韧性 为 (3.70±0.08) MPa·m 1/2 。 3.1.2 Ti 单质引入 与直接添加 TiB 2 相比,在烧结过程中原位反 应生成 TiB 2 可以在较低的烧结温度下获得更高 的密度和更好的机械性能。 Gorle 等 [39] 将 Ti-B( 原 子比 1:2) 混合粉体以 5 wt.% 、 10 wt.% 和 20 wt.% 的比例加入到 B 4 C 粉末中,研磨 4 h 后通过 SPS 在 1400 ℃ 下获得致密的 B 4 C 复合陶瓷。由于 WC 污染,获得了由被 (Ti 0.9 W 0.1 )B 2 和 W 2 B 5 的细颗粒 包裹的 B 4 C 颗粒组成的无孔微结构。当 Ti-B 混合 物的量从 5 wt.% 增至 20 wt.% 时,烧结活化能从 234 kJ·mol −1 降至 155 kJ·mol −1 。含 5 wt.% Ti-B 混 合物的 B 4 C 复合材料的最大硬度为 (3225±218) HV 。由于 TiB 2 的原位形成反应是高 度放热并释放大量能量的自蔓延反应,因此,原 料颗粒界面间的实际温度预计高于 SPS 烧结温 度,同时,液相 W 2 B 5 的形成润湿了 B 4 C 表面, 有助于降低 B 4 C 晶粒的界面能,并加速了沿晶界
华盛顿州自由湖 – 2008 年 3 月 11 日 – SprayCool 是军用先进热管理产品和解决方案领域的公认领导者,该公司今天宣布与诺斯罗普·格鲁曼公司 (NYSE: NOC) ISR 系统部门签订后续维护合同,为空军机载信号情报载荷 (ASIP) 计划提供额外的 SprayCool 液冷机箱。采购额外的 SprayCool 机箱是为了支持安装在空军 U-2 Dragon Lady 高空监视和侦察机上的三个系统的运行维护。20 插槽 VME 机箱将支持 400 至 1,200 瓦的电子处理功率。获得专利的 SprayCool 两相液冷外壳具有独特的能力,能够通过保持机箱中各种计算和电力电子设备的最佳温度来控制操作环境。SprayCool 的 ASIP 底盘至关重要,因为电子设备在严格控制的环境中运行,需要在整个任务期间调节加热和冷却。由此产生的受控操作环境提供了比其他外壳配置更好的电子设备性能和更高的可靠性。从根本上说,正是 SprayCool 先进的热管理底盘使得 U-2 的高性能 ASIP 传感器能够安装在飞机的非加压部分。“与诺斯罗普·格鲁曼签订的这份后续合同直接源于我们的 SprayCool 底盘在过去一年的 ASIP 飞行测试计划中取得的成功,”SprayCool 总裁兼首席执行官 Matt Gerber 表示,“我们很高兴得知空军将把 ASIP 传感器过渡到作战任务,并且我们的 SprayCool 底盘将成为作战人员系统解决方案不可或缺的一部分。” Gerber 补充说,诺斯罗普·格鲁曼选择 SprayCool 的主要原因是,两相液冷外壳使其高性能信号处理器能够安装在飞机的非增压区域。“这款 SprayCool 温控底盘支持包含 RF、数字和其他支持电子设备,并可在高空(即使在非增压飞机中)提供可靠且一致的侦察信息收集,这有助于使地面作战人员免受伤害。”Gerber 说。SIGINT 在全球反恐战争 (GWOT) 中尤为重要,因为城市环境中的情报至关重要。SprayCool 液冷底盘将于 2008 年交付给诺斯罗普·格鲁曼。
1.1.1 本海底管道入级与建造规范(以下简称“规范”)涵盖海上设计、建造和运营的管道,以及从岸上主管道段的海底穿越部分至距离海岸线最近的隔离阀的管道,用于输送液态、气态和两相碳氢化合物以及其他可通过管道输送的介质。除本规范外,俄罗斯船舶登记局(以下简称“登记局”)在进行技术监督时还适用海底管道建造和运营技术监督指南、危险生产设施及其设备工业安全技术监督指南以及国家技术监督机构的标准和规则。1.1.2 在每种具体情况下,登记局进行的技术监督范围应通过与管道所有者和/或运营组织达成的特别协议来规定,必要时还应与国家技术监督机构商定。 1.1.3 本规范不涵盖软管和悬跨管线。软管应符合《海船入级与建造规范》第 VIII 部分第 6 节“系统和管路”的要求。根据用途,可能对海底管线内的软管施加附加要求。
非常规地材料通常表现出多模式孔径分布。,我们为多孔介质开发了一个综合框架,该培养基表现出多孔的孔隙率尺度,使用混合理论饱和到一种或两种类型的流体。分别明确得出和识别了管理方程式和构成定律。从能量平衡方程中出现的有效应力𝝈'对于弹性和弹性变形都可以采用,在这种变形中,孔隙和饱和效果起着核心作用。提出的模型是一般的,从某种意义上说,它适用于未耦合的仿真和耦合模拟。使用拉普拉斯变换和数值拉普拉斯反转方法求解了未耦合流动模拟的场方程。通过可视化无量纲结果,我们可以在自然断裂的储层的耗尽过程中获得对不同阶段的定量见解。用于耦合流量和地球力学模拟,带状负载问题以及可变形3D储层问题中的两相流量说明了可塑性,多重孔隙率,孔隙率交换和毛细管压力对系统响应的影响。
药物优化变得越来越多。尽管如此,它还是具有挑战性的,因为它需要保留原始药物的有益特性,同时增强其范围的所需属性。在这项工作中,我们旨在通过引入S Caffold GPT来应对这一挑战,这是一种新型的大型语言模型(LLM),设计用于基于分子SCAF-FOLL的药物优化。我们的工作包括三个关键组成部分:(1)一种三阶段的药物优化方法,可以整合预训练,填充和解码优化。(2)一种独特设计的两相增量训练方法,用于预训练药物优化的基于LLM的发电机,以增强性能。(3)代币级的解码优化策略T OP-N,该策略可以使用预验/填充的LLMS启用受控的,奖励引导的生成。fi-nyly,通过对共证和癌症基准进行全面的评估,我们表明,Caffold GPT的表现优于药物优化基准中的基线,同时在保持原始的功能型支架方面表现出色。
摘要 碳化硅 (SiC) MOSFET 属于宽带隙器件家族,具有低开关和传导损耗的固有特性。SiC MOSFET 在较高工作温度下的稳定运行引起了研究人员对其在高功率密度 (HPD) 功率转换器中的应用的兴趣。本文介绍了基于 SiC MOSFET 的两相交错升压转换器 (IBC) 的性能研究,用于调节多电飞机 (MEA) 中的航空电子总线电压。已经开发了 450W HPD、IBC 进行研究,当由 24V 电池供电时,可提供 28V 输出电压。提出了一种 SiC MOSFET 的栅极驱动器设计,可确保转换器在 250kHz 开关频率下运行,降低米勒电流和栅极信号振铃。峰值电流模式控制 (PCMC) 已用于负载电压调节。将基于 SiC MOSFET 的 IBC 转换器的效率与 Si 转换器进行了比较。实验获得的效率结果表明,SiC MOSFET 是重负载和高开关频率操作下的首选器件。关键词:高功率密度 (HPD)、交错升压转换器 (IBC)、多电飞机 (MEA)、峰值电流模式控制 (PCMC)、碳化硅 (SiC)
1.1.1 本《海底管道入级与建造规范》(以下简称“SP 规范”)涵盖海上设计、建造和运营的管道、从岸上主管道段的海底穿越到距离海岸线最近的隔离阀的管道,这些管道用于输送液态、气态和两相碳氢化合物以及其他可通过管道输送的介质。除本规范外,俄罗斯船舶登记局(以下简称“登记局”)在进行技术监督时还适用《海底管道建造和运营技术监督指南》、《危险生产设施及其设备工业安全技术监督指南》以及国家技术监督机构的标准和规则。1.1.2 在每种具体情况下,登记局进行的技术监督范围应通过与管道所有者和/或运营组织达成的特别协议来规定,必要时还应与国家技术监督机构商定。 1.1.3 SP 规则不涵盖软管。软管应符合《远洋船舶分类和建造规则》第 VIII 部分第 6 节“系统和管道”的要求。根据应用情况,可能对海底管道内的软管施加额外要求。1.1.4 要求 sp
和压力,并在每次前体暴露之间进行吹扫循环。[3] 需要彻底了解以选择前体、基材和发生自饱和沉积的温度窗口。之前已全面介绍了 ALD 类型和前体化学,重点是金属硫化物及其应用。[4] 本综述重点介绍 ALD 生产的薄膜中的界面相互作用。术语“界面”是指两相之间的边界——前一层结束和下一层开始的分离边界。理想情况下,这两层在化学上不具有相互作用,界面充当向下一种材料的突然转换。然而,在实践中,接触区域中的物理、化学和电子相互作用是不可避免的。这些相互作用引起的各种现象为与界面相关的研究开辟了新的途径。例如,最明显的相互作用可能是涉及晶格的相互作用。Short 等人。 [5] 报告称,他们在沉积 ZnS 和 Cu x S 多层薄膜的过程中发现,薄膜的结构取决于最先沉积的材料:Cu 2 S 主要呈现单斜结构,而 CuS 和 ZnS 则呈现六方取向。[6]