黑洞信息(丢失)悖论是一个有关黑洞蒸发和演化过程的幺正性难题的问题(见霍金[9],或Chakraborty和Lochan[4]、Harlow[8]、Polchinski[16]和Marolf[10]的评论)。幺正性守恒的假设(尤其是我们的假设)意味着几种一般的情况。例如,可以采用这样的假设(我们也这样做),即信息在黑洞蒸发过程中(以某种方式)逐渐释放。然而,这个观点(显然和其他观点一样)需要某种令人信服的物理机制,或者(在缺乏机制的情况下)至少需要某种可行的信息传输抽象算法。研究该悖论的一个显而易见的方法是,从特定的物理机制中抽象出问题,从量子比特的角度分析问题。在文献中,我们可以找到许多量子比特模型,它们或多或少成功地再现了黑洞演化的各个步骤(例如,参见 Broda [ 2 , 3 ]、Giddings [ 6 , 5 ]、Giddings 和 Shi [ 7 ]、Mathur [ 11 , 12 ]、Mathur 和 Plumberg [ 13 ]、Osuga 和 Page [ 14 ] 或 Avery [ 1 ] 的评论)。不幸的是,在所有这些模型中,因果关系这一重要问题似乎都没有引起应有的重视,因此没有明确排除超光速通信的可能性。与此相反,我们目前的处理方式优先考虑因果关系。更准确地说,在我们的方法中,我们严格控制通过量子比特传输的信息的方向。
从创新经济学领域中汲取见解,我们讨论了塑造生成AI进展的可能具有竞争性的环境。我们分析的核心是可容纳性的概念 - 行业中的公司是否能够控制其创新所产生的知识以及互补的资产 - 是否有效进入都需要访问有效的公司可以访问的专业基础设施和能力。虽然AI基金会模型的快速改进有望在经济的广泛部门之间产生变革性的影响,但我们认为,对互补资产的严格控制可能会导致集中的市场结构,就像过去的技术动荡事件中一样。我们建议现任公司可能限制进入的可能道路,将新移民局限于下属角色并扼杀广泛的部门创新。我们以关于如何避免这种寡头的未来的猜测得出的结论。旨在分数化或促进共同访问互补资产的政策干预措施可能有助于保留竞争和激励措施,以扩展生成的AI前沿。具有讽刺意味的是,充满活力的开源AI生态系统的最佳希望可能取决于“流氓”技术巨头的存在,他们可能会选择与较小公司的开放性和互动,作为对其他现有企业的战略武器。
诱导抗氧化蛋白和中和反应性亲电试剂的 2 期解毒酶是防止致癌的重要机制。正常细胞提供多方面的途径来严格控制 NF-E2 相关因子 2 (NRF2) 介导的基因表达,以应对一系列内源性和外源性致癌分子的攻击。NRF2 被其激活剂瞬时激活能够诱导 ARE 介导的细胞保护蛋白,这些蛋白对于防止各种毒性和氧化损伤至关重要,因此 NRF2 激活剂在癌症化学预防中具有功效。由于 NRF2 具有细胞保护功能,它可以像天使一样保护正常细胞免受致癌物的侵害,但当保护作用作用于癌细胞时,它会产生无敌的癌细胞并在肿瘤进展中扮演魔鬼角色。事实上,在多种癌症中都发现了NRF2的异常激活,这为癌细胞的增殖和存活创造了有利的环境,并导致耐药性,最终导致患者的临床预后不良。因此,药物抑制NRF2信号传导已成为一种有前途的癌症治疗方法。本综述旨在汇编NRF2的调控机制及其在癌症中的双刃剑作用。此外,我们还总结了NRF2调节剂,特别是植物化学物质在化学预防和癌症治疗中的研究进展。
随着新型个性化癌症疗法的不断发展,富含合成嵌合抗原受体的 T 细胞(即嵌合抗原受体 T 细胞 (CAR-T) 细胞)已应用于临床实践。CAR-T 细胞能够识别并结合靶细胞表面的特定抗原(即所谓的肿瘤相关抗原)。这种创新方法已被批准用于治疗血液系统恶性肿瘤,也可作为造血干细胞移植的桥梁。含有修饰 T 细胞的药物的生产包括几个步骤 - 白细胞分离术、T 细胞活化、转导和最终 CAR-T 细胞的扩增。CAR-T 细胞的活化通过独立于主要组织相容性复合体的途径进行,这通常与免疫系统不受控制的反应和细胞因子释放综合征等不良反应有关。CAR-T 疗法只能在认证中心进行,并且需要不同医学学科的经验丰富的专家之间的密切合作。这决定了它的有效性。从采集和冷冻保存,到运输和改造,再到解冻和输注,每个步骤都受到严格控制,因为这对药物的质量和功效有着至关重要的影响。尽管 CAR-T 疗法已被证实具有益处,但它仍然只适用于符合明确标准的患者。然而,随着新适应症的出现,这些标准可能会发生变化。
摘要 — 手动控制控制论旨在利用人类控制动力学的数学模型来理解和描述人类如何控制车辆和设备。这种“控制论方法”可以对人类行为进行客观和定量的比较,并可以系统地优化与手动控制相关的人机控制界面和培训。当前的控制论理论主要基于 20 世纪 60 年代形式化的技术和分析方法,并且已被证明在捕捉人类认知和控制的全部范围方面能力有限。本文回顾了我们对人类手动控制知识的当前最新水平,指出了控制论的主要基本局限性,并提出了推进该理论及其应用的可能路线图。该路线图的核心将从当前的线性时不变建模方法(仅适用于严格控制和静止条件下的人类行为)转变为有助于分析现实控制任务中自适应且可能随时间变化的人类行为的方法。本文介绍了控制论领域当前的关键发展实例,这些发展有助于实现这一转变,包括人类对预览的使用、可预测的离散机动、技能获取和训练、随时间变化的人体建模以及神经肌肉系统建模。这些努力将为控制论奠定新的基础,并将影响人类所从事的所有领域。
我们应对压力的方式各不相同,通常不加思索。有些方法通常是“积极的”,因为它们最终对我们有益;有些方法则是“消极的”,因为它们当时感觉很好,但最终不利于健康;有些方法则两种都有。了解我们通常的做法,无论是好方法还是坏方法,都是很有帮助的。当我感到压力或身体不适时,我倾向于…… ❏ 确保自己有充足的睡眠 ❏ 比平时熬夜或睡眠不足 ❏ 吃得好,注重健康食品 ❏ 吃得更多、更少、不健康或严格控制饮食 ❏ 喝更多含咖啡因的食物(茶、咖啡、能量饮料) ❏ 多喝酒 ❏ 更多地使用尼古丁、大麻或其他药物 ❏ 按指示服用处方药 ❏ 从事体育活动(如散步、锻炼、瑜伽课) ❏ 更多购物,冲动或强迫性 ❏ 练习正念、放松和/或呼吸 ❏ 比平时更多地赌博或在线游戏 ❏ 到户外享受大自然 ❏ 与朋友和/或家人共度时光 ❏ 避开人群并变得孤僻 ❏ 向关心我的人寻求支持 ❏ 花更多时间在社交媒体上 ❏参与宗教或精神活动 ❏ 跳过我平常的宗教或精神活动 ❏ 定期与我的治疗师会面 ❏ 跳过与我的治疗师的会面 ❏ 腾出时间放松(阅读有趣的文章、演奏乐器、去户外活动、做艺术)
摘要在这项工作中,我们回顾了基于氟化金属有机前体的化学溶液沉积(CSD)在使用化学溶液沉积(CSD)方面取得的最新进展,从而增强了超导reba 2 Cu 3 O 3 O 7(Rebco)膜和涂层导体(CCS)。首先,我们研究了基于新型低氟金属溶液的溶液制备,沉积和热解相关的步骤的进步。我们表明,可以使用一种新型的多功能胶体溶液(包括预制的纳米颗粒(NP))来引入人工钉中心(APC)。我们分析了如何在热解过程中解散发生的复杂物理化学转化,目的是最大化膜厚度。了解成核和生长机制对于使用自发隔离或胶体溶液方法进行微观结构的微观调整而言至关重要,并使工业可扩展此过程。高级纳米结构研究已深刻地改变了我们对缺陷结构及其家谱学的理解。这是高度浓度的随机分布和定向的BAMO 3(M = ZR,HF)NP所起的关键作用,从而增强了APC的浓度,例如堆叠断层和相关的部分脱位。将缺陷结构与临界电流密度j C(H,T,θ)相关联,可以在整个H -T相图中严格控制涡旋固定属性并设计涡流固定景观的一般方案。我们还指通过转移
通过表面钙化的paTern识别受体对病原体相关的分子模式(PAMP)的感知激活呼吸道爆发氧化酶同源性D(RBOHD),通过氯曲霉诱导的激酶1(BIK1)直接磷酸化激活呼吸爆发氧化酶同源性D(RBOHD),并诱导反应氧氧的产生(ROS)。rboHD活性必须严格控制以避免ROS的有害影响,但对RBOHD倾斜鲜明的效果知之甚少。要了解RBOHD的调节,我们使用了RBOHD的共免疫沉淀,并通过质谱分析和鉴定的吞噬氧化氧化酶/BEM1P(PB1)结构域的蛋白质(PB1CP)。pb1cp负调节RBOHD和对真菌病原体Colle-totrichum higginsianum的抵抗力。PB1CP与Bik1竞争,在体外与RBOHD结合。更重要的是,PAMP处理增强了PB1CP-RBOHD相互作用,从而导致磷酸化的Bik1与体内RBOHD的解离。pb1CP位于细胞外周的细胞和PAMP治疗中,诱导PB1CP和RBOHD重新定位到相同的小内膜室。此外,PB1CP在拟南芥中的过表达导致RBOHD蛋白的丰度降低,这表明PB1CP可能参与RBOHD内吞作用。我们发现了PB1CP是RBOHD的新型负调节剂,并揭示了其可能的调节机制,涉及从RBOHD中去除磷酸化的Bik1和RBOHD内吞作用的促进。
印度尼西亚的抽象抗菌抗药性估计,2018年抗菌抗药性的死亡数据约为70万人,到2050年,这一数字将继续增加到1000万人。有必要通过评估抗生素的使用来控制抗生素耐药性。这项研究的目的是确定RSI Sultan Agung Semarang时期的抗生素使用量。这项研究具有描述性研究设计和回顾性数据收集。使用的人口是使用抗生素的内科病房中住院患者的所有病历数据。有394个病历符合纳入标准。使用ATC/DDD方法计算的数据被描述地描述,并以百分比,表格,百分比和表格的形式呈现。结果表明,抗生素的总DDD值为81.56 DDD/100患者天,总停留时间(LOS)为2,588天。DDD值最高的抗生素是左氧氟沙星肠胃外,每100天住院每100天,患者每天接受剂量0.5克的治疗。虽然进入90%DU段的抗生素是左氧氟沙星(P),头孢曲松(P),Moxifloxacin,Cefoperazone sulbactam(P),氨甲基磺胺sulbactam(P),Meropenem(P),Meropenem(P),Metronidazole(P) (O),Dan Cefotaxime(P)。由于可能具有抗生素抗性的可能性,应严格控制其使用。
模拟是一种技术,通过计算机程序以数学形式表示物理系统,以解决问题。过去 20 年来,计算速度和软件质量的进步使飞行模拟在模拟飞行环境方面特别有效,现在它已成为民用、军用、制造和研究领域航空领域不可或缺的一部分。航空标准建议在飞行控制系统 (FCS) 开发期间进行有人驾驶模拟。至少应完成以下模拟:(a) 在硬件可用之前使用 FCS 的计算机模拟进行有人驾驶模拟,以及 (b) 在首次飞行之前使用实际 FCS 硬件进行有人驾驶模拟 [1]。与飞行环境相比,模拟可以对所研究的条件进行严格控制,并允许按需提供特定的飞行情况,其中一些是罕见或危险的。与使用飞机进行这些活动相比,模拟不会造成污染、噪音或其他干扰。对于除最简单的飞机之外的所有飞机,飞行模拟的成本也比使用飞机本身低得多。最后,模拟器可以昼夜不停地以密集的运行速度运行,并且可以执行数据库中包含的任何练习或功能,而不受地点、天气、一天中的时间或一年中的季节的限制。随着航空电子系统、先进的驾驶舱控制、先进的驾驶舱显示器、电传操纵技术等的快速发展,从概念到认证的快速转变是成功的飞机开发项目的基本要求。使用