对 2022 年最广泛传播的乌克兰 meme 之一 — — 俄罗斯军舰 meme 的修改,其在最新媒体话语的创建和发展中的作用;还指定了有关大众媒体出版物中使用 meme 的趋势。研究的主题是“俄罗斯军舰” meme 及其一组修改,它们在 2022 年 1 月 24 日之后在媒体环境中传播。据称,meme 发挥作用的媒体领域非常广泛,它不仅通过口头传播,而且通过视觉传播,以各种媒体和大众媒体类型为代表:从国家公职人员在社交网络上的帖子到个人媒体项目和媒体品牌。这个 meme 的一个特殊之处还在于它按照新闻相关类型的规则跨越了以国家为导向的媒体环境的边界,成为时事和社会重要信息。模因传播的另一个特点是,其语言核心是一种淫秽表达,根据许多语言文化的标准,这种表达的使用受到严格限制。本文作者通过叙事分析、概括和解释的方法,确定了模因在形成新的英雄主义和不朽话语方面的作用,这些话语在混合战争和信息对抗条件下非常重要。
也门的性别暴力强化了文化和社会习俗所塑造的现有不平等的性别动态,进一步限制了妇女和女孩的流动性和言论自由,无论是在线上还是线下。这种暴力行为的后果远远超出了数字领域,深深影响了妇女和女孩的线下生活。幸存者往往面临更高的精神健康问题风险、被迫的社会孤立以及男性为保护自己而强加的对网络空间的严格限制(Salam@ 10/2023)。在极端情况下,也门的性别暴力可能导致荣誉谋杀、强迫婚姻或强迫搬迁的威胁(联合国妇女署 2022;Salam@ 10/2023;KII 25/07/2024;KII 29/08/2024;Al Mawqea Post 30/10/2022;FGD 11/06/2024)。也门的保护环境十分艰难——加上缺乏具体的网络法律、严格且压迫性的性别规范、持续的冲突以及无效的执法机制——加剧了这些挑战,导致许多妇女和女童在遭受性别暴力时几乎无法获得司法或保护。
我们提出了一种新的量子绝热定理,该定理允许人们严格限制多种系统的绝热时间尺度,包括最初由最初无界的汉密尔顿人描述的系统,这些系统被截止使有限量化。我们的界限适合超导电路的量子近似值,并提出了一个足够的条件,可在N量子位的电路模型的2 n维Qubit子空间中保留。这种绝热定理的新颖性是,与以前的严格结果不同,它不包含2 n作为绝热时间尺度的一个因素,并且它允许人们获得二十岁时间尺度的表达,而与吉尔伯特巡回赛的少量二维希尔伯特空间无关。作为一种应用,我们提出了该时间尺度对超导频率Qubit的电路参数的明确依赖性,并证明从Qubit子空间中泄漏出来是不可避免的,因为隧道屏障在量子末期末端升高。我们还讨论了获得2 N×2 N有效哈密顿量的一种方法,该方法最能近似于缓慢变化的电路控制参数引起的真实动力学。本文是主题问题的一部分“量子退火和计算:挑战和观点”。
描述了除南极洲外全球陆地区域 0.5 � 纬度 � 0.5 � 经度表面气候学的构建。气候学代表 1961-90 年期间,包括九个变量:降水量、湿日频率、平均温度、昼夜温差、水汽压、日照、云量、地面霜冻频率和风速。气候表面是根据 1961-90 年站点气候平均值的新数据集构建的,数值介于 19 800(降水量)和 3615(风速)之间。使用薄板样条函数将站点数据作为纬度、经度和海拔的函数进行插值。使用交叉验证和与其他气候学进行比较来评估插值的准确性。与早先发表的全球陆地气候学相比,这一新气候学取得了进步,因为它严格限制在 1961-90 年期间,描述了一系列扩展的地表气候变量,明确将海拔作为预测变量,并包含与此和其他常用气候学相关的区域误差的评估。研究人员已经在生态系统建模、气候模型评估和气候变化影响评估等领域使用了该气候学。数据可从气候研究单位获得,所有月度字段的图像都可以通过万维网访问。
2006 年 8 月,美国运输安全管理局 (TSA) 根据英国当局发现的跨大西洋炸弹阴谋,大幅修改了其乘客安检政策。为了弥补这一阴谋所揭示的安全漏洞,修订后的政策严格限制了 TSA 允许乘客携带通过安检站的液体、凝胶和喷雾剂的数量。应委员会的要求,GAO 测试了乘客安检过程中是否存在安全漏洞。为了进行这项工作,GAO 试图 (1) 获取制造恐怖分子可能用来对飞机造成严重损坏并威胁乘客安全的装置的说明和组件;(2) 测试 GAO 调查人员是否能够携带制造这些装置所需的所有组件通过机场安检站而不被发现。GAO 在全国 19 个机场进行了秘密测试,这些机场不具代表性。测试结束后,GAO 及时向 TSA 提供了两次简报,以帮助其采取纠正措施。在这些简报中,GAO 建议 TSA 考虑采取多项措施来改进其乘客安检计划,包括人力资本、流程和技术等方面。GAO 目前正在对这些问题进行更系统的审查,并预计将于 2008 年初发布一份包含对 TSA 建议的综合公开报告。
当考虑像飞机客舱这样非常特殊的领域时,通信要求就会提高。乘客的不同需求往往与客舱内的严格限制不相容。如今,机上娱乐 (IFE) 系统在现代航班中得到了广泛的应用。IFE 系统通常由座椅电子盒、乘客终端硬件、乘客控制单元、用于选择服务的遥控器以及视频显示单元(屏幕)组成。在这些系统中使用无线技术可以提高乘客和航空电子公司的满意度。然而,客舱内部并不是一个灵活的环境;可靠性和安全性是两个强制性要求,因此对其施加了不同的限制。这意味着现成的技术(包括天线、网络拓扑、网络协议和服务在内的硬件)通常不适合这样的环境。因此,必须设计和实施一种新的架构。本文旨在整合现有的异构通信技术,展示其优缺点,同时考虑到飞机客舱内施加的通信限制。由此,提出了一种新的无线异构架构。此外,为了能够使用这种架构,我们提出了一种新协议,该协议利用智能天线技术允许乘客控制单元被自主识别和配置
尽管NISQ设备受到严格限制,但已经开发了硬件和算法 - 感知的量子电路映射技术,以实现成功的算法执行。由于实验设备及其小尺寸的稀缺性,对自旋量子量子处理器的映射和汇编实现没有太多关注。但是,基于它们的高可扩展性潜力和快速进步,及时开始在此类设备上探索解决方案。在这项工作中,我们讨论了具有共享控件的可扩展横文架构的独特映射挑战,并引入Spinq,这是第一个用于可扩展自旋量子体系结构的本机编译框架。Spinq的核心是综合策略,该策略旨在解决横杆的唯一操作约束,同时考虑编译可伸缩性并获得O(n)计算复杂性。为了评估Spinq在这种新颖体系结构上的性能,我们编制了一组明确定义的量子电路,并基于多个指标(例如Gate开销,深度开销和估计的成功概率)进行了深入的分析,这反过来又使我们能够创建独特的映射和建筑洞察力。最后,我们提出了新型的映射技术,这些技术可能会提高该体系结构上的算法成功率,并有可能激发有关其他可扩展自旋量子体系结构的量子电路映射的进一步研究。
摘要 - 在大规模部署之前,必须调查和评估自动驾驶汽车(AV)的安全性能。实际上,特定AV的测试场景数量受到严格限制的预算和时间受到严格限制。由于严格限制的测试施加的限制,现有的测试方法通常会导致明显的不确定性或难以量化评估结果。在本文中,我们首次提出了“少数测试”(FST)问题,并提出了一个系统的框架来应对这一挑战。为了减轻小型测试方案集中固有的可观不确定性,我们将FST问题作为优化问题,并根据社区覆盖范围和相似性搜索测试方案集。具体而言,在AVS设置的测试方案更好的概括能力的指导下,我们动态调整了该集合以及每个测试方案对基于覆盖范围的评估结果的贡献,利用了替代模型(SMS)的先前信息。通过SMS上的某些假设,建立了评估误差的理论上上限,以验证给定数量有限的测试中评估准确性的充分性。与常规测试方法相比,剪切方案的实验结果表明,我们方法的评估误差和方差显着降低,尤其是对于对场景数量严格限制的情况。索引术语 - 射击测试,自动驾驶汽车,SCENARIO覆盖范围,测试方案集
未经批准,不得对这些计划进行任何修改。 此标准计划仅限于单户住宅甲板使用。 所有工作应遵守圣地亚哥县修订和采用的现行加州建筑规范。 此计划必须附有符合地块平面图最低要求 (PDS 090) 制定的地块平面图。 最低施工规范 (PDS 081) 应与此计划结合使用。 防护装置和扶手 (PDS 075) 应与此计划结合使用。 活荷载 = 60 psf 甲板上不得施加任何重型集中荷载(如热水浴缸等)。 如果甲板由现有建筑支撑,则甲板下方的窗户、门或其他开口不得超过 4 英尺宽。 甲板的最大柱子高度应严格限制在 10 英尺。 甲板不得由悬垂物或悬臂支撑。 框架构件应为 2 号花旗松或更高级木材。 18 英寸范围内的甲板托梁和 12 英寸范围内的大梁应经过防腐处理。 防腐处理木材的紧固件应为热浸镀锌镀锌钢、不锈钢、硅青铜或铜。 从基础底部前缘到日光的水平距离至少应为 7'-0”。 基础混凝土混合物的最小抗压强度应为 f' c = 2,500 psi。
摘要 在 Pt 3 Ti(111) 合金表面生长的高度有序氧化钛薄膜被用于纳米 W 3 O 9 团簇的受控固定和尖端诱导电场触发的电子操控。根据操作条件,产生了两种不同的稳定氧化物相 z'-TiO x 和 w'-TiO x 。这些相对 W 3 O 9 团簇的吸附特性和反应性有很大的影响,这些团簇是在超高真空条件下 WO 3 粉末在复杂的 TiO x /Pt 3 Ti(111) 表面上热蒸发形成的。发现物理吸附的三钨纳米氧化物是位于金属吸引点上的孤立单个单元或具有 W 3 O 9 封盖的六边形 W 3 O 9 单元支架的超分子自组装体。通过将扫描隧道显微镜应用于 W 3 O 9 –(W 3 O 9 ) 6 结构,单个单元经历了尖端诱导还原为 W 3 O 8 。在高温下,观察到大型 WO 3 岛的聚集和生长,其厚度被严格限制为最多两个晶胞。这些发现推动了使用操作技术在表面上实现模板导向成核、生长、网络化和功能分子纳米结构的电荷状态操控的进展。