IAEA规定了标准的应用,并根据其法规的第三条和第VIII.C条的条款,可以提供与和平核活动有关的信息交换,并为此目的作为中介机构。有关核活动安全性的报告是作为安全报告发出的,这些报告提供了可用于支持安全标准的实际例子和详细方法。其他与安全有关的IAEA出版物作为应急准备和响应出版物发行,放射学评估报告,国际核安全小组的Insag报告,技术报告和TECDOCS。IAEA还会发出有关放射学事故,培训手册和实际手册以及其他特殊安全相关出版物的报告。与安全相关的出版物是在IAEA核安全系列中发行的。IAEA核能系列包括信息出版物,以鼓励和协助研究和实际应用核能出于和平目的。它包括有关技术状况和进步的报告和指南,以及经验,良好实践和实践实例,核电循环,放射性废物管理和退役。
飞机刚刚再次转入进近,L IRS 故障警告被激活,导致 A/P B 脱离,俯仰、滚转和航向数据以及左侧 PFD 上的 F/D 条消失。机长再次手动飞行,同时根据记忆执行 IRS 故障检查表的操作之一,即 IRS 转换开关 - 两者都在 R 上。因此,两个 FCC 使用了右侧 ADIRU 提供的数据。俯仰、滚转和航向再次显示在左侧 PFD 上,F/D 条重新出现。
两台发动机均处于怠速状态,且未设置停车制动器,飞机缓慢向前移动。此时,牵引机侧的牵引杆端已完全与牵引机断开。然而,尽管锁定装置已解锁,但 NLG 侧的牵引杆端仍与 NLG 纠缠在一起。由于飞机意外移动,耳机操作员和机翼行走员都必须从被纠缠的牵引杆带离移动的飞机。耳机操作员立即通知机组设置停车制动器,但没有任何回应。然后,他断开了 NLG 外部电源控制面板 2 上的无线适配器,并将耳机的耳机插孔直接连接到控制面板。在飞机向前移动时,纠缠的牵引杆与 NLG 分离并向飞机前侧左侧摆动。随后,NLG 在机组人员之前与牵引机左侧相撞
两台发动机都处于怠速状态,没有设置停车制动器,飞机缓慢向前移动。此时,牵引机侧的牵引杆端已完全与牵引机断开。然而,尽管锁定装置已解锁,但 NLG 侧的牵引杆端仍然与 NLG 纠缠在一起。由于飞机意外移动,耳机操作员和机翼行走员都必须从被纠缠的牵引杆带离移动的飞机。耳机操作员立即通知机组人员设置停车制动器,但没有任何回应。然后,他断开了 NLG 外部电源控制面板 2 上的无线适配器,并将耳机的耳机插孔直接连接到控制面板。当飞机向前移动时,纠缠的牵引杆与 NLG 分离并摇晃到飞机前左侧。随后,NLG 在机组人员面前与牵引车左侧相撞
航空事故调查局 交通部 No.26, Jalan Tun Hussein, Precinct 4 联邦政府行政中心 62100 PUTRAJAYA 电话:+603-8892 1072
摘要:飞机维护给维护人员带来了相当大的挑战。这些人员每天都面临着时间压力、系统复杂性、反馈稀疏、工作空间狭窄等挑战。其中一些挑战导致了与飞机维护相关的事故和严重事件。然而,很少有正式的实证研究描述飞机维护对尼日利亚飞机事故和事件的影响。因此,本研究旨在探讨 2006 年至 2019 年与飞机维护相关的事件和 2009 年至 2019 年尼日利亚事故的促成因素,以更深入地了解航空业这一安全关键方面,提高相关利益相关者的认识并寻找可能的缓解因素。为了实现这一目标,使用维护因素和分析分类系统 (MxFACS) 和 Hieminga 的维护事件分类法对尼日利亚发生的事故报告和强制性事件报告进行了内容分析。在由主题专家评估数据输出后,使用评分者间一致性值来确定研究准确性。发生率最高的维护相关事件和事故归因于“拆卸/安装”、工作实践,例如“积聚污垢和污染”、“检查/测试”、“操作员和监管机构监督不足”、“未遵守程序”和“维护不正确”。为了确定这些结果的根本原因,通过调查咨询了维护工程师,以了解这些促成因素的根本原因。研究结果显示,过去十年中最常见的维护相关事故和严重事件是“与地形相撞”和“起落架事件”。导致事故的系统级故障最常见的是“发动机”和“机身结构”。对这些事故贡献最大的维护因素是“运营商和监管机构监督”、“检查不足”和“未遵守程序”。研究还强调,2006 年至 2019 年尼日利亚航空事故的最大因果因素和促成因素是“安装/拆卸问题”、“检查/测试问题”、“工作实践”、“工作近距离”、“润滑和维修”,所有这些都与其他国家其他研究人员的研究相对应。
本报告总结了拟议的代码开发工作,以扩展 NRC 对非轻水反应堆技术的事故进展、源项和后果分析的建模和仿真能力。本报告描述了不同类型的非轻水反应堆以及 NRC 计算机代码的建模差距,包括用于事故进展和源项分析的 MELCOR、用于后果分析的 MACCS 和用于放射性核素清单的 SCALE。严重事故进展、源项和后果分析深深植根于 NRC 的监管政策和实践中。许可流程基于纵深防御的概念,其中发电厂的设计、运行、选址和应急计划构成了独立的核安全层。这种方法鼓励核电站设计师结合多道防线,以保持辐射危害与工人、公众和环境之间的物理屏障的有效性——无论是正常运行还是事故情况。与设计基准事故一起使用的各种监管源术语,建立和确认核设施的设计基准,包括安全重要项目,确保工厂设计符合美国联邦法规 (CFR) 中规定的安全和数值放射性标准(例如,10 CFR 100.11,“禁区、低人口区和人口中心距离的确定”;10 CFR 50.67,“事故源术语”;10 CFR 50.34(a)(1)(iv);10 CFR 第 50 部分“生产和使用设施的国内许可”附录 A“核电站通用设计标准”中通用设计标准 19“控制室”)以及后续员工指导。通用设计标准 (GDC) 适用于轻水反应堆 (LWR)。非轻水反应堆将具有主要设计标准 (PDC),其可能有类似的要求。 MELCOR 是桑迪亚国家实验室为 NRC 开发的最先进的计算机代码,用于执行核反应堆严重事故进展和源项分析。MELCOR 是一种灵活的集成计算机代码,旨在描述和跟踪严重事故的演变,以及相关放射性核素在封闭空间(如安全壳或建筑物)内的传输。它是一个知识库,包含价值数亿美元的实验和模型开发,特别关注轻水反应堆现象学以及非轻水反应堆技术的扩展功能。现象识别和排序表 (PIRT) 中已经开发和记录了特定的数据和计算需求,例如与 NGNP 相关的严重事故 (SA) PIRT 以及各种钠冷快堆和熔盐反应堆 PIRT 分析 [1] [2] [3] [4] [5] [6]。相关数据需求已从这些 PIRT 中收集并整合到本报告中。本报告提供了与各种非轻水反应堆设计相关的代码功能状态的高级理解。
进行内窥镜检查时,发现 EGT 探头 4 和 5(位于 5 点钟方向)的传感器已烧毁,探头 4 比探头 5 受损更严重。值得一提的是,根据 2015 年 12 月的 L.05138 车间访问记录,当时两个探头均处于全新状态。对探头 4、5 和 7 进行了绝缘测试、电路电阻测试和极性测试。部件维护手册 (CMM) 77-21-40。只有探头 4 未通过所有三项测试,其他两个通过了所有测试。除了探头 5 上有可见的热损坏外,其他 6 个 EGT 探头未显示任何异常。持续的 BSI 显示 LPT 1 级定子通过 EGT 探头端口 #4 和 #5 在大约 5 点钟位置显示出对翼型的严重损坏。该区域的翼型被熔化,其中心部分部分缺失。其余的 LPT 1 级叶片没有显示任何
类型:A320(印度航空)和 B737(捷特航空) 国籍:印度 注册:VT-EDD(印度航空)和 VT-JBE(捷特航空) 2. 所有者/运营商:M/s 印度航空和 M/s 捷特航空 3. 机长:ALTP 持有人(印度航空)和 ATPL 持有人(捷特航空) 受伤程度:无 4. 副驾驶:ALTP 持有人(印度航空)和 CPL 持有人(捷特航空) 受伤程度:无 5. 事故地点:德里 IGI 机场 6. 事故日期和时间:2016 年 1 月 30 日; 06:15:00UTC(大约) 7. 最后出发点:印度航空在 Shamshabad,捷特航空在 Bengaluru 8. 预定着陆点:印度航空和捷特航空均为德里 9. 运营类型:印度航空和捷特航空均为定期运营 10. 机上机组人员:(02+05)印度航空 & 捷特航空(02+05)受伤程度:无 11. 机上乘客:134 人(印度航空)& 142 人(捷特航空)受伤程度:无 12. 运营阶段:两架飞机均着陆 13. 事件类型:因试图降落在未指定的跑道上而发生的空中接近