摘要:睡眠呼吸暂停是一种潜在的致命疾病,会导致睡眠期间频繁的呼吸停顿。先前的研究表明,在睡眠期间对EEG信号的监测可以自动检测呼吸暂停事件。然而,需要对特定呼吸暂停类型进行更全面的分类及其严重性,以准确临床诊断和对关键呼吸暂停发作的实时检测。在这项研究中,我们采用了来自25名呼吸暂停患者的带注释的EEG信号,并使用EEG频域和非线性特征构建了两个不同的分类器,用于呼吸暂停严重程度和呼吸暂停类型的多类分类。在两个分类问题中,三个模型,即评估并比较了支持向量机(SVM),线性判别分析(LDA)和幼稚的贝叶斯(NB)。结果表明,SVM模型在两个分类问题中都表现出了最佳的精度,高于基线水平。呼吸暂停严重程度的二进制分类中的SVM性能是可以接受的(76%的平均准确性),但是在呼吸暂停类型的多类分类的情况下,SVM分类器并未达到所有呼吸暂停类型的可接受性能(48%的平均精度)。我们的发现表明,除了检测呼吸暂停发作外,EEG信号还可以用于呼吸暂停严重程度的分类,这可能导致开发准确的诊断系统以自动评估和睡眠障碍的管理。
道路交通事故仍然是城市规划师,运输当局和全球公共安全利益相关者的关键挑战。尽管道路基础设施和交通管理方面取得了进步,但事故的频率和严重性继续使紧急响应系统紧张并损害公共安全。事故热点特别令人担忧,因为它们经常由于道路设计不良,交通密度和不利天气条件等因素而表现出反复出现的事故模式。本文解决了通过数据驱动的方法来预测事故严重程度并确定易于识别事故的领域的挑战。使用一个超过770万个包含地理,环境和时间特征的事故记录的大型数据集,该论文开发了机器学习模型,以预测事故的严重性并检测高风险区域的空间群集。通过将历史事故数据与天气和道路状况等实时因素相结合,该论文旨在创建一个为主动干预措施提供信息并优化紧急响应策略的系统。
交通事故仍然是死亡,伤害和高速公路严重中断的主要原因。理解这些事件的促成因素对于提高道路网络安全性至关重要。最近的研究表明,预性建模在洞悉导致事故的因素方面具有效用。但是,缺乏重点放在解释复杂的机器学习和深度学习模型的内部工作以及各种特征影响事故词典模型的方式。因此,这些模型可能被视为黑匣子,而利益相关者可能不会完全信任他们的发现。这项研究的主要目的是使用各种转移学习技术创建预测模型,并使用Shapley值对最有影响力的因素提供见解。预测合格中伤害的严重程度,多层感知器(MLP),卷积神经网络(CNN),长期短期记忆(LSTM),残留网络(RESNET),EfficityNetB4,InceptionV3,InceptionV3,极端的Incep-Tion(Xpection)(Xpection)(Xpection)和Mobilenet和Mobilenet。在模型中,MobileNet显示出最高的结果,精度为98.17%。此外,通过了解不同的特征如何影响事故预测模型,研究人员可以更深入地了解导致事故的造成的范围,并制定更有效的干预措施以防止发生事故。
住院或住院的延长;禁用;限制自我保健ADL 4级(威胁生命的后果):紧急干预。5级(死亡)与不良事件有关。其他皮肤病学诊断包含在官方CTCAE V5网站https://ctep.cancer.gov/protocoldevelopment/electronic applications/docs/ctcae v5快速参考5x7.pdf。
的单值得分反映了(淡出)与(相同分数)典型的新颖性相关性相关和与记忆相关的功能性MRI激活模式的偏差,已被提议为健康神经认知老化的成像生物标志物。在这里,我们测试了这些分数的效用,作为阿尔茨海默氏病(AD)的潜在诊断和预后标记,以及诸如轻度认知障碍(MCI)或主观认知下降(SCD)等风险状态。为此,我们分析了来自SCD,MCI和AD痴呆症患者的后续记忆功能MRI数据,以及参加多个中心delcode研究的AD痴呆症患者(AD-REL)的健康对照组和一级亲属(ad-Rel)(n = 468)。基于单个参与者的全脑功能性MRI新颖性和subse quent记忆响应,我们计算了淡出和相同的分数,并评估了他们与AD风险阶段,神经心理学测试分数,CSF淀粉样蛋白阳性和APOE基因型的关联。与健康对照组,SCD和AD-REL相比,基于记忆的淡出和相同的分数与MCI和AD痴呆群中的年轻人的参考样本相比显示出更大的偏差。此外,MCI和AD痴呆群组之间的基于新颖性的分数显着差异。在整个样本中,单值分数与神经心理测试的表现相关。基于新颖性的相同分数在SCD和AD-REL中的β-阳性和β阴性个体之间以及APOEɛ4载体和AD-REL中的非载体之间进一步差异。因此,淡出和相同的分数与AD的认知表现和个人风险因素有关。作为诊断和预后生物标志物作为诊断和预后生物标志物的潜在用途需要进一步探索,尤其是在与AD痴呆症患者的SCD和健康亲属的Indivi双重探险中。
抽象野火散发出大气气溶胶,影响气候和空气质量。西伯利亚是野火的已知来源区域。然而,由于西伯利亚野火对气候和空气质量及其对死亡率和对死亡率和经济在当前和近乎未成年的温暖大气条件下的影响以及其对死亡率和经济的影响而引起的颗粒物污染的影响的全面知识仍然很差。因此,我们使用跨学科研究模型在当前和近乎形成的气候条件下模拟了改变西伯利亚野火排放的影响(Miroc5)的模型,从而模拟了改变西伯利亚野火排放的效果(MIROC5)。增加的西伯利亚野火烟雾可能在北半球广泛地区引起冷却效果,并在源头附近和下风地区(即东亚)加剧了空气质量。发生的西伯利亚野火越多,在这些地区存在的空气污染越多,这可能会增加那里的死亡率和福利损失。然而,在当前和近乎未能的气候条件下,温度变化对国内生产总值的总影响是模棱两可的。我们在当前和近未能的气候条件下,由于西伯利亚野火引起的空气质量变化的全面结果表明,限制西伯利亚野火对气溶胶影响的努力增加对于防止可能的过剩死亡率和经济损失至关重要。
• 已知或潜在不良事件的严重性 • 药物的预期效益 • 疾病的严重性 • 药物是否为新药[即新分子实体(NME)] • 预期治疗持续时间 • 可能使用该药物的人口规模