脑转移性癌症构成了重要的临床挑战,患者的治疗选择有限,预后不良。近年来,免疫疗法已成为解决脑转移的一种有前途的策略,比传统治疗具有明显的优势。本评论探讨了在脑转移性癌症的背景下肿瘤免疫疗法不断发展的景观,重点是肿瘤微环境(TME)和免疫治疗方法之间的复杂相互作用。通过阐明TME内的复杂相互作用,包括免疫细胞,细胞因子和细胞外基质成分的作用,该综述突出了免疫疗法重塑脑转移治疗范式的潜力。利用免疫检查点抑制剂,细胞免疫疗法和个性化治疗策略,免疫疗法有望克服血脑屏障和免疫抑制脑转移的微观环境所带来的挑战。通过对当前研究发现和未来方向的全面分析,这项综述强调了免疫疗法对脑转移癌管理的管理性影响,为个性化和精确的治疗干预提供了新的见解和机会。
fnl的使命:为新技术的快速发展提供独特的国家资源,以解决生物医学科学中一些最紧迫,最苛刻的问题,包括癌症,艾滋病毒/艾滋病中持续的未满足挑战以及新兴的传染病的威胁。
版权所有©2024作者和Frontier Scientific Research Publishing Inc.这项工作是根据创意共享归因国际许可证(CC by 4.0)获得许可的。http://creativecommons.org/licenses/4.0/
Prior Authorization not required for Mastectomy/Breast Reconstruction for the following Diagnosis codes: C50.011,C50.012,C50.019,C50.021, C50.022,C50.029,C50.111,C50.112,C50.119,C50.121, C50.122, C50.129,C50.211,C50.212,C50.219,C50.221, C50.222, C50.229,C50.311,C50.312,C50.319,C50.321, C50.322,C50.329,C50.411 ,C50.412,C50.419,C50.421, C50.422,C50.429,C50.511,C50.512,C50.519,C50。521,C50.522,C50.529,C50.611,C50.612,C50.619,C50。621.C50.622,C50.629,C50.811,C50.812,C50.819,C50。 821,C50.822,C50.829,C50.911,C50.912,C50.919,C50。 921,C50.922,C50.929,C79.81,D05.00,D05.01,D05.02,D05.10,D05.11,D05.11,D05.12,D05.80,D05.81,D05.81,D05.82,D05.82,D05,D05。 90,D05.91,D05.92,D48.61,D48.62,I97.2,N65.0,N65.1,Q79.8.T85.43XA,T85.43XD,T85.43XD,T85.43XS,Z42.1,Z45.811,Z45.811,Z45.811 ,, Z45.812,Z45.811,Z45.819,Z85.3,Z90.10,Z90.11,Z90。 12,Z90.13621.C50.622,C50.629,C50.811,C50.812,C50.819,C50。821,C50.822,C50.829,C50.911,C50.912,C50.919,C50。 921,C50.922,C50.929,C79.81,D05.00,D05.01,D05.02,D05.10,D05.11,D05.11,D05.12,D05.80,D05.81,D05.81,D05.82,D05.82,D05,D05。 90,D05.91,D05.92,D48.61,D48.62,I97.2,N65.0,N65.1,Q79.8.T85.43XA,T85.43XD,T85.43XD,T85.43XS,Z42.1,Z45.811,Z45.811,Z45.811 ,, Z45.812,Z45.811,Z45.819,Z85.3,Z90.10,Z90.11,Z90。 12,Z90.13821,C50.822,C50.829,C50.911,C50.912,C50.919,C50。921,C50.922,C50.929,C79.81,D05.00,D05.01,D05.02,D05.10,D05.11,D05.11,D05.12,D05.80,D05.81,D05.81,D05.82,D05.82,D05,D05。90,D05.91,D05.92,D48.61,D48.62,I97.2,N65.0,N65.1,Q79.8.T85.43XA,T85.43XD,T85.43XD,T85.43XS,Z42.1,Z45.811,Z45.811,Z45.811 ,, Z45.812,Z45.811,Z45.819,Z85.3,Z90.10,Z90.11,Z90。12,Z90.13
语音融合 - 即,将自己的语音适应对话者的讲话 - 已显示出在人类人类的对话以及人机相互作用中发生的。在这里,我们调查了以下假设:人类对机器人的融合受人类对机器人的看法和对话主题的影响。我们进行了一个受试者内的实验,其中33名参与者与两个机器人相互作用,他们的眼睛凝视行为不同 - 一个不断地关注参与者。另一个产生了目光的厌恶,与人类的行为类似。此外,机器人提出的问题提高了亲密关系水平。我们观察到说话者倾向于在F0上汇聚到机器人。但是,这种与机器人的融合并不是说话者如何看待他们或主题的亲密关系。有趣的是,在谈论更亲密的话题时,扬声器产生了较低的F0。我们根据当前的对话融合理论讨论了这些发现。
脑转移性癌症构成了重要的临床挑战,患者的治疗选择有限,预后不良。近年来,免疫疗法已成为解决脑转移的一种有前途的策略,比传统治疗具有明显的优势。本评论探讨了在脑转移性癌症的背景下肿瘤免疫疗法不断发展的景观,重点是肿瘤微环境(TME)和免疫治疗方法之间的复杂相互作用。通过阐明TME内的复杂相互作用,包括免疫细胞,细胞因子和细胞外基质成分的作用,该综述突出了免疫疗法重塑脑转移治疗范式的潜力。利用免疫检查点抑制剂,细胞免疫疗法和个性化治疗策略,免疫疗法有望克服血脑屏障和免疫抑制脑转移的微观环境所带来的挑战。通过对当前研究发现和未来方向的全面分析,这项综述强调了免疫疗法对脑转移癌管理的管理性影响,为个性化和精确的治疗干预提供了新的见解和机会。
几乎所有药品都是基于其对代表注册试验中研究人群“平均值”的患者的效果而获得批准的,大多数药品标签最多允许在出现毒性的情况下根据经验减少剂量。在这篇观点文章中,我们探讨了支持在癌症治疗中使用个性化剂量的一些证据,并展示了我们如何能够在现有的剂量、暴露和毒性关联模型的基础上建立,以证明剂量优化(包括增加剂量)如何有可能显著改善疗效结果。我们还根据自己开发个性化剂量平台的经验,探讨了在现实环境中实施个性化剂量方法的一些障碍。特别是,我们的经验体现在将剂量平台应用于前列腺癌多西他赛治疗中。
培养学生对学习的兴趣被认为具有许多积极的下游效果。大型语言模型已经开辟了新的范围,以生成满足自己利益的内容,但目前尚不清楚这种自定义的方式在多大程度上可以对学习产生积极的效率。为了探索这个新颖的维度,我们进行了一项受试者间研究(n = 272),其具有生成的AI词汇学习应用程序的不同变化,使用户可以个性化他们的学习示例。参与者被随机分配给对照(句子来自先前存在的文本)或实验条件(根据用户的文本输入而生成的sen tence或短篇小说)。虽然我们没有观察到结构之间的学习绩效的不同,但分析表明,生成的AI驱动的环境个性化的个性化阳性的学习动机。我们不知道这些结果与以前的fndings有何关系,并强调了它们对使用生成AI进行个性化学习的新兴费用的意义。
摘要为了揭示神经性疼痛经历的复杂性,研究人员试图使用脑电图(EEG)和皮肤电导(SC)鉴定可靠的疼痛特征(生物标志物)。尽管如此,它们用作设计个性化疗法的临床帮助仍然很少,并且患者处方常见和效率低下的止痛药。为了满足这种需求,新型的非药理干预措施,例如经皮神经刺激(TENS),通过神经调节和虚拟现实(VR)激活外周痛缓解,以调节患者的注意力。但是,所有当前治疗方法都遭受患者自我报告的疼痛强度的固有偏见,具体取决于其倾向和耐受性,以及未考虑疼痛发作的时间的未明确,预定义的会话时间表。在这里,我们显示了一个脑部计算机界面(BCI),该界面检测到来自EEG的神经性疼痛的实时神经生理学特征,并因此触发了结合TENS和VR的多感官干预。验证多感官干预有效减轻了实验性诱发的疼痛后,通过电力诱导疼痛,用13个健康受试者对BCI进行了测试,并在实时解码疼痛中显示了82%的回忆。然后用八名在线疼痛精度达到75%的神经性患者进行了验证,因此释放了在神经性患者疼痛感知中引起显着降低(50%NPSI评分)的干预措施。这为使用完全便携式技术的个性化,数据驱动的疼痛疗法铺平了道路。我们的结果证明了从客观神经生理学信号中实时疼痛检测的可行性,以及VR和TEN的触发组合的有效性以减轻神经性疼痛。
摘要在为无行为能力的患者做出替代判断时,代理人经常努力猜测患者有能力会想要什么。代理人也可能因(唯一)做出这种决定的责任而感到痛苦。为了解决此类问题,已经提出了一种患者偏好预测因子(PPP),该预测因素将使用算法从人群级别的数据中推断出单个患者的治疗偏好,以了解具有相似人口统计学特征的人的已知偏好。然而,批评家们已经表明,即使这种PPP平均比人类替代者更准确,在识别患者偏好方面,拟议的算法仍然无法尊重患者(以前的)自主权,因为它会借鉴“错误的”数据:对于个人而言,这些数据不适合个人的数据,因此他们不适合他们的挑战,并且他们的实际原因是他们的实际原因,或者是实际的,或者是实际上的,或者是实际上的,或者是实际的,或者是实际的,或者是实际的,或者是实际上所依据的,或者是实际的原因。在船上受到这样的批评,我们在这里提出了一种新方法:个性化的患者偏好预测因子(P4)。P4基于机器学习的最新进展,该技术允许包括大型语言模型在内的技术更便宜,更有效地“微调”在特定于人的数据上。与PPP不同,P4将能够从实际上特定于其特定的材料(例如先前的治疗决策)中推断出单个患者的偏好。因此,我们认为,除了在个体水平上比以前提出的PPP更准确,P4的谓词还将更直接地反映每个患者自身的原因和价值观。在本文中,我们回顾了人工智能研究中的最新发现,这些发现表明P4在技术上是可行的,并认为,如果它是开发和适当部署的,则应缓解一些基于自主的主要关注原始PPP的批评者的关注。然后,我们考虑对我们的提案的各种异议,并提供一些暂定的答复。
