注释歧义由于固有的数据不确定性,例如医学扫描中的界限模糊以及不同的观察者专业知识和偏好已成为训练基于深度学习的医学图像模型的主要观点。为了解决这个问题,普遍的做法是从不同专家那里收集多个注释,导致多评价医学图像分割的设置。现有的作品旨在将不同的注释合并到“地面真实”中,而在众多医疗环境中通常无法实现,或者产生不同的结果,或产生与个人专家评估者相对应的个性化结果。在这里,我们提出了一个更雄心勃勃的多评价医学图像细分的目标,即遵守多元化和个性化结果。指定,我们提出了一个名为d-persona的两个阶段框架(第一个d iversification,然后是角色lization)。在第I阶段,我们利用多个给定注释来训练一个可能性的U-NET模型,并具有约束损失,以证明预测多样性。以这种方式,在第I阶段建造了一个共同的空间,其中不同的潜在代码表示多样化的专家意见。然后,在第二阶段,我们设计了多个基于注意力的投影头,以适应来自共享潜在空间的相应专家提示,然后执行个性化的医疗图像细分。我们评估了内部鼻咽癌数据集和公共肺结核数据集(即LIDC-IDRI)的拟议模型。我们的代码将在https://github.com/ycwu1997/d-persona上发布。的实验实验表明,我们的D-Persona可以同时获得多元化和个性化的结果,从而实现了多评位者医疗图像细分的新SOTA性能。
培养学生对学习的兴趣被认为具有许多积极的下游效果。大型语言模型已经开辟了新的范围,以生成满足自己利益的内容,但目前尚不清楚这种自定义的方式在多大程度上可以对学习产生积极的效率。为了探索这个新颖的维度,我们进行了一项受试者间研究(n = 272),其具有生成的AI词汇学习应用程序的不同变化,使用户可以个性化他们的学习示例。参与者被随机分配给对照(句子来自先前存在的文本)或实验条件(根据用户的文本输入而生成的sen tence或短篇小说)。虽然我们没有观察到结构之间的学习绩效的不同,但分析表明,生成的AI驱动的环境个性化的个性化阳性的学习动机。我们不知道这些结果与以前的fndings有何关系,并强调了它们对使用生成AI进行个性化学习的新兴费用的意义。
描述内分泌系统,包括垂体、胰腺、甲状腺、肾上腺、卵巢和睾丸的位置以及激素的作用 说明血糖浓度由胰腺监测和控制 描述血糖浓度过高时身体的反应 解释什么是 1 型和 2 型糖尿病以及如何治疗 仅高血压:描述血糖浓度过低时身体的反应 仅高血压:解释胰高血糖素如何与胰岛素相互作用以控制体内血糖水平 描述身体如何流失水分、离子和尿素 描述身体细胞失去或获得过多水分的后果 仅高血压:回忆蛋白质消化会导致体内氨基酸过量,并描述这些氨基酸会发生什么 描述肾脏如何产生尿液 仅高血压:描述抗利尿激素 (ADH) 对肾小管通透性的影响,并解释抗利尿激素 (ADH) 如何控制体内水分水平 描述如何通过器官移植或透析治疗肾衰竭,并回忆透析的基本原理 描述男性和女性在青春期发生的情况,包括生殖激素知识 描述月经周期中所涉及激素(FSH、LH 和雌激素)的作用 仅 HT:解释不同激素如何相互作用来控制月经周期和排卵 描述如何通过激素和非激素避孕方法控制生育能力(从规范中给出具体例子) 仅 HT:解释如何使用激素治疗不孕症,包括 IVF 的步骤 仅 HT:评估生育治疗的风险和益处 仅 HT:描述肾上腺素和甲状腺素在体内的功能,并回忆它们的产生位置 仅 HT:解释甲状腺素和肾上腺素在体内作为负反馈系统的作用 4. 5.
摘要:人工智能 (AI) 的进步彻底改变了教育格局,催生了 AI 导师的概念。本摘要探讨了 AI 导师的概念,该导师为学习者提供个性化的学习路径和全天候支持。AI 导师利用复杂的算法和机器学习技术来分析学生的优势、劣势和学习风格。通过从评估、测验和用户交互等各种来源收集数据,AI 导师为每个学生量身定制个性化的学习路径。这种自适应方法可确保学习者收到专门为满足其个人需求和促进有效学习而设计的内容和练习。此外,AI 导师提供 24/7 支持,消除了传统课堂设置和固定辅导时间的限制。学习者可以随时访问 AI 导师,让他们按照自己的节奏和方便的方式学习。导师提供即时反馈,澄清疑问,并协助解决问题,培养互动和引人入胜的学习体验。此外,AI 导师会跟踪每个学生的进度,确定需要改进的领域并及时提供干预措施以提高学习成果。此外,人工智能导师可以提供广泛的教育资源,包括交互式多媒体内容、模拟和虚拟现实体验。这些资源迎合不同的学习偏好,有助于有效地强化概念。采用具有个性化学习路径和全天候支持的人工智能导师,有可能通过为学习者提供量身定制的教学和持续指导来改变教育。它满足了学生的不同需求,促进了自主学习,并提高了整体教育成果。该领域的进一步研究和开发将有助于完善人工智能导师的能力,使个性化和可及的教育成为全球学习者的现实。
• 干扰项会增加难度 • Stuart Garner 2007 • Harms、Chen 和 Kelleher 2016 • Denny、Luxton-Reilly 和 Simon 2008 • 将正确块和干扰项块配对会降低难度 • Denny、Luxton-Reilly 和 Simon 2008 • 提供缩进会降低难度 • Denny、Luxton-Reilly 和 Simon 2008 • Ihantola 和 Karavirta 2011 • 较少的块会使问题更容易 • Denny、Luxton-Reilly 和 Simon 2008
几乎所有药品都是基于其对代表注册试验中研究人群“平均值”的患者的效果而获得批准的,大多数药品标签最多允许在出现毒性的情况下根据经验减少剂量。在这篇观点文章中,我们探讨了支持在癌症治疗中使用个性化剂量的一些证据,并展示了我们如何能够在现有的剂量、暴露和毒性关联模型的基础上建立,以证明剂量优化(包括增加剂量)如何有可能显著改善疗效结果。我们还根据自己开发个性化剂量平台的经验,探讨了在现实环境中实施个性化剂量方法的一些障碍。特别是,我们的经验体现在将剂量平台应用于前列腺癌多西他赛治疗中。
人工智能 (AI) 与教育的融合带来了变革性的变化,尤其是在个性化学习领域。本文探讨了人工智能通过根据学生的个人需求定制学习途径来增强教育体验的多方面方式。我们研究了各种人工智能驱动的工具和平台,这些工具和平台促进了自适应学习环境、提供了实时反馈并支持差异化教学。通过回顾当前的文献和案例研究,本文重点介绍了人工智能如何识别和解决学习差距、促进参与度并促进更有效的教育成果。此外,我们还讨论了潜在的挑战,例如数据隐私问题、教师培训的必要性以及强化偏见的风险。本文最后提出了利用人工智能以最大程度地发挥效益同时降低相关风险的建议,旨在为所有学生创造更公平、更有效的教育体验。
2.2. 价值................................................................................................................................................ 18
建议引用推荐引用Gubin,Matthew M。; Artyomov,Maxim n。; Mardis,Elaine R。;和Schreiber,Robert D.,“肿瘤新抗原:建立个性化癌症免疫疗法的框架”。临床研究杂志。125,9。3413-3421。(2015)。https://digitalcommons.wustl.edu/open_access_pubs/4270
• low sensitivity of mammography (up to 93% in fatty breast to 30 % in extremely dense breasts ( D category) • Number of false positive results in fatty breast 11/1000 mammo increases to 24/1000 in dense breast • Screening reduces relative risk of death from BC in fatty breast to 43 % compared to 13 % • Density is independent risk factor for developing breast cancer aside age and genetics ( 4-6 fold in D breasts)