编码特征作为预测结果,邀请用户进行认知情况调 研。从用户调研数据的计算结果可知,用户对不同特 征编码的认知存在一定的共性,有共同的认知习惯。 1 )就属性语义来看,认知效率主要受色相、明 度、饱和度、尺寸、位置、形状的影响。色相:国军 标对色彩的应用有明确的规范,在进行色相编码时, 应考虑用户对专用色彩属性的认知习惯,严格遵守色 彩使用规范。对于没有硬性规定的色彩,也应以用户 过往的知识、经验为基础进行编码设计。如,在界面 设计中,一般认为红色表示危险,黄色表示警告,绿 色表示安全。明度:实验表明,在深色背景下,明度 越高信息等级越高。战术显控系统复杂性较高,合适 的明度编码设计适合应用于信息层级设计,能够有效 降低用户的学习成本。饱和度:饱和度取决于该色中 含色成分和消色成分(灰色)的比例。含色成分越大, 饱和度越大;消色成分越大,饱和度越小 [14] 。高饱和 度的色彩编码方式更能引起视觉关注,帮助用户集中 注意力。形状:在战术显控系统中,涉及形状属性的 元素主要为图形和符号,包括通用类和特殊类。在进 行形状编码时,现有图符应遵循沿用的原则,新的图 符应结合现实形态、行业背景进行设计,以符合用户 认知习惯、缩短学习过程,提高交互效率。尺寸:根 据实验结果显示,信息尺寸的大小与信息的重要等级 成正比,信息越重要,尺寸越大。位置:用户对显示 屏上的信息关注度依次为中间、左上方、右上方、左 下方、右下方 [15] 。在进行界面布局时,应注意信息等 级与其在界面中位置的一致性,同时要保证同类信息 的位置编码统一。 2 )就情感语义来看,战时用户的生理和心理负 荷较高,任务情景的不确定性易增加用户的操作压 力 [5] 。在进行交互界面设计时应考虑信息编码元素的 情感性。从实验结果来看,影响情感语义的特征主要 为形状和色彩。尖锐的形态容易让用户产生较大的心 理压力,而圆润浑厚的形状更容易使用户平静。在进 行形状编码时,可采用倒角的设计手法。根据蒙赛尔 色彩体系对色彩要素的划分及实验结果,战术显控系 统的主色可以选用冷色调,明度、饱和度不宜过高, 以避免色彩刺激增加用户的焦虑感。而对于重点信息 和即时变化类信息,可采用高明度或高饱和度的色 彩,以提高用户的警觉性。
在2023年,我们继续以快速的速度增长。我们的EV电池的安装能力在中国牢固排名前三,一个月的装机能力进入了全球前4个。我们支持所有战略客户的首次亮相,在国际市场上取得了新的突破。我们的能源存储业务呈指数增长,并获得了许多战略客户的批量交付。在海洋,建筑机械,铁路运输领域实现了新的增长,并形成了示范效应。作为国家战略新兴行业,低空经济是未来工业发展的新增长动机。高空式移动性的高尼克/二氧化硅电池可确保高功率和高速充电能力,同时在轻量级和安全性能方面实现跨越升降机。
该集团在本年度首次采用了IAS 12“国际税改革 - 支柱两种模型规则”的修正案。ias 12被修改以添加例外,以识别和披露与颁布或实施税法有关的延期税收资产和负债的信息,以实施由组织经济合作与发展组织发布的两种模型规则(“支柱两项法规”)。修正案要求实体在发行后立即应用修正案。这些修正案还要求实体在支柱上有两个立法有效的时期内分别披露其当前的税收费用/收入/收入/收入,并在该期间有效的,定性和定量的信息在支柱中对支柱的两次所得税暴露在支柱中,该阶段是支柱两次立法的规定,而在年度报告中却在年度范围内均在每年1月1日起在1月1日生效。
别是石墨烯的 D 、 G 和 D+G( 也称 G') 峰 [ 19 ] ,这表 明两种样品都生成了高质量的石墨烯。其中 D 峰 是由于芳香环中 sp 2 碳网络扭曲使得碳原子发生 对称伸缩振动引起的 [ 20 ] ,用于衡量材料结构的无 序度,它的出现表明石墨烯的边缘较多或者含有 缺陷,这与 SEM 观察到的结果一致; G 峰是由 sp 2 碳原子间的拉伸振动引起的 [ 21 ] ; G' 峰也被称 为 2 D 峰,是双声子共振二阶拉曼峰,其强度与 石墨烯层数相关 [ 22 - 24 ] 。与 LIG 拉曼曲线相比, MnO 2 / LIG 在 472.6 cm −1 波段较强的峰值,对应于 Mn − O 的伸缩振动峰,证实了 MnO 2 的晶体结构。 XRD 测试结果表明, MnO 2 /LIG 在 2 θ =18.002° 、 28.268° 、 37.545° 、 49.954° 和 60.244° 处的特征峰分别对应 α - MnO 2 的 (200) 、 (310) 、 (211) 、 (411) 和 (521) 晶面 ( 图 4 b PDF#440141) , α -MnO 2 为隧道结构,可容 纳溶液中的阳离子 ( 如 Zn 2+ 、 Li + 、 Mg 2+ 、 Na + ) [ 21 ] 。 25.9° 和 44.8° 处的峰为 LIG 中 C 的特征衍射峰。
ch 3(Ch 2)2 Coo- + 2CO 2 + 6H 2→CH 3(CH 2)4 COO- + 4H 2 O(6)-143。3
神户大学教育学部毕业后,加入株式会社Intec,任职期间,取得神户大学MBA、经营学博士学位,2016年起担任环太平洋大学经营学部现代经营学系副教授,专业为组织理论、组织行为学。经营学博士、MBA、工程师(信息工程)、信息处理工程师(AU、AN、PM、AE等)
1 法国巴黎-萨克雷大学泰雷兹公司混合物理部门 - F-91767 帕莱索,法国 2 法国巴黎高等物理与材料研究实验室,PSL 研究大学,法国巴黎国家科学研究院 F-75005 巴黎,法国 3 代尔夫特理工大学 Kavli 纳米科学研究所 - PO Box 5046, 2600 GA 代尔夫特,荷兰 4 萨勒诺大学“ER Caianiello”物理系 - I-84084 Fisciano (SA),意大利 5 CNR-SPIN - Via Giovanni Paolo II, 132, I-84084 Fisciano (SA),意大利 6 查尔姆斯理工大学微技术和纳米科学系-MC2 SE-41296 哥德堡,瑞典 7 物理系和纳米技术与先进科学研究所材料,巴伊兰大学拉马特甘,以色列 8 物理系“E. Pancini”,那不勒斯费德里科二世大学 - Monte S. Angelo 综合楼,I-80126 那不勒斯,意大利 9 GFMC,马德里康普顿斯大学材料物理系 - E-28040 马德里,西班牙 10 CNR-SPIN,Monte S. Angelo 综合楼 - Via Cinthia,I-80126 那不勒斯,意大利
摘要:准晶体 (QC) 于 1984 年首次发现,通常不表现出长程磁序。本文,我们报告了真实的二十面体准晶体 ( i QC) Au − Ga − Gd 和 Au − Ga − Tb 中的长程磁序。Au 65 Ga 20 Gd 15 i QC 在 TC = 23 K 时表现出铁磁转变,表现为磁化率和比热测量中的急剧异常,同时在 TC 以下出现磁布拉格峰。这是首次在真实的准晶体中观察到长程磁序,与迄今为止发现的其他磁性准晶体中观察到的自旋玻璃状行为形成对比。此外,当用 Tb 取代 Gd 时,即对于 Au 65 Ga 20 Tb 15 i QC,在 TC = 16 K 时仍然保留铁磁行为。虽然在 Au 65 Ga 20 Gd 15 i QC 中观察到的比热异常的尖锐异常在 Tb 取代后变得更宽,但中子衍射实验清楚地显示在 TC 下方明显出现了磁布拉格峰,这表明 Au 65 Ga 20 Tb 15 i QC 也存在长程磁序。我们的发现有助于进一步研究在具有前所未有的最高全局对称性即二十面体对称性的真实准周期晶格上形成的奇异磁序。■ 引言
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
如今,围绕库仑势垒对聚变反应和准弹性散射的研究引起了广泛关注。通过这类重离子碰撞可以研究核-核相互作用势和核结构性质 [ 1 ]。碰撞伙伴的核结构性质可显著影响亚势垒域中的聚变产额。聚变对中不同内在自由度的参与降低了参与者之间的聚变势垒,并导致与一维势垒穿透模型 (BPM) 的预测相比大得多的聚变结果。文献中已充分证实,聚变伙伴的相对运动和内在通道之间的耦合会导致单个聚变势垒分裂为不同高度和重量的势垒分布。这被称为聚变势垒分布,聚变势垒分布的形状对聚变过程中涉及的耦合类型非常敏感。聚变势垒分布的概念由 Rowley 等人 [2] 提出,可通过对 𝐸 𝑐.𝑚. 𝜎 𝑓 对质心能量取二阶导数获得。此外,大角度准弹性散射函数可以产生与聚变势垒分布非常相似的势垒分布,并且聚变势垒分布和准弹性势垒分布的形状基本相同。准弹性势垒分布可通过对 𝐸 𝑐.𝑚. 的准弹性散射截面取一阶导数获得。众所周知,聚变过程可以用穿透概率来解释,基于量子力学隧穿,而准弹性散射与反射概率有关。重离子准