驾驶是一项复杂的活动,需要仔细计划和持续关注。人类驾驶员根据观察结果,过去的经验以及对潜在情景和必要行动的期望来分析其周围环境。尽管对观测数据进行了自动驾驶培训,但它们面临着陌生,不确定和冒险的驾驶情况的挑战。这些车辆在具有各种元素的环境中运行,例如交通标志,行人和其他车辆。了解这些要素之间的关系和互动对于在不同情况下理解自动驾驶汽车的行为至关重要。要实现5级完整驾驶自动化,这需要一个能够在没有人工干预的情况下处理所有驾驶任务的系统,人工智能(AI)模型需要高质量的表示,发现以及对驾驶场景中元素之间因果关系的理解1。在因果关系(CBN)[1]中表达的对因果关系的理解将受益于知识图(kg)中的明确表示。这个想法提出了许多重要的研究问题。在驾驶场景中,基于CBN的因果关系可以帮助理解广告场景吗?可以在KG中使用基于CBN的因果表示执行干预和反事实推理,例如确定特定的
摘要 - 场景流估计通过预测场景中的点运动来确定场景的3D运动场,尤其是在自主驾驶中的帮助任务时。许多具有大规模点云的网络作为输入使用Voxelization来创建用于实时运行的伪图像。但是,体素化过程通常会导致特定点特征的丧失。这引起了为场景流任务恢复这些功能的挑战。我们的论文引入了Deflow,该文件可以从基于体素的特征过渡到使用门控复发单元(GRU)改进的点特征。为了进一步增强场景流量估计的性能,我们制定了一种新颖的损失函数,以解释静态点和动态点之间的数据不平衡。对Argoverse 2场景流量任务的评估表明,Deflow在大规模点云数据上取得了最新的结果,表明我们的网络与其他网络相比具有更好的性能和效率。该代码在https://github.com/kth-rpl/deflow上进行开源。