硼中子俘获疗法是一种癌症联合疗法,利用适当能量的外部中子束和优先集中在患者肿瘤组织中的含 10B 药物。中子和硼核之间的核反应产生一个 α 粒子和一个反冲 7 Li 核,对肿瘤细胞造成高度局部损伤。这一概念虽然简单,由 G. Locher 于 1936 年首次提出,但事实证明实施起来具有挑战性,需要真正的多学科团队。过去的一个困难是,全世界只有很少的中子源具有足够的强度和硼中子俘获疗法所需的能量。唯一合适的中子源是研究反应堆,分布在世界各地的大学和政府实验室。研究反应堆不是临床环境,虽然进行了许多临床试验,一些中心报告了令人鼓舞的结果,但治疗的患者数量很少,不同中心的结果比较并不简单。 2001年,国际原子能机构发布了《中子俘获疗法现状》(IAEA-TECDOC-1223),总结了以反应堆源为基础的中子俘获疗法领域的现状。
这项工作报告了开发用于操作中子表征的缩小尺寸的激光粉末融合装置。描述了设计注意事项,设备配置和详细的设置。该设备已针对中子衍射的安装和工具进行了优化,用于对印刷过程中金属组件的结构和微观结构演变和构成的多种研究。与设备的介绍结合使用,我们提供了操作中性中子衍射的示例,用于应变分析和操作中子成像,以进行缺陷表征和温度映射在瑞士散布中子源的两个不同光束线上。通过获取可易受裂纹材料的衍射模式并跟踪衍射峰的变化,可以在处理过程中挖掘出固定体积内弹性菌株的热贡献的演变。散装缺陷表征。中子束衰减的变化与最终的微观结构相关,它证实了该技术在操作中表征了探测器内部缺陷形成的能力。我们进一步证明了如何使用铍过滤器,因此如何使用冷中子光谱的长波长部分,可以在打印双金属复合材料时在空间和时间分辨的温度图中获得。
大气中子辐照谱仪(ANIS)是中国散裂中子源(CSNS)的一条新光束线,主要用于现代微电子的加速测试。它具有类似大气的中子谱,具有准直束斑和泛光束斑。ANIS 总长 40 米,配备中子快门、飞行管、中子扩展器、通量控制器、准直器、清除磁铁、中子滤波器以及光束线屏蔽。ANIS 后端设有控制室、操作室和储藏室。设计、组装、检查测试和初始调试测试于 2022 年成功完成。ANIS 目前处于科学调试的高级阶段,用于测量不同配置下的中子谱、通量和剖面。使用裂变电离室 (FIC)、位置灵敏气体电子倍增器 (GEM)、活化箔和单晶金刚石探测器测量了中子束特性。在这项工作中,我们介绍了 ANIS 的测量光束规格和光束评估,这对于即将启动的 ANIS 用户计划很有希望。还介绍了早期操作和用户实验。
摘要:使用三角大学核实验室中的中子束5至27 MeV,使用微琴探测器测量塑料闪烁体EJ-260的非线性能量响应。第一阶和二阶Birks的常数是从数据中提取的,发现为𝑘=(8。70±0。93)×10 - 3 g / cm 2 / mev和𝑘=(1。< / div>42±1。 00)×10-5(g / cm 2 / meV)2。 该结果涵盖了一个独特的能量范围,该能量范围与反应器反向β衰变检测器中的快速中子背景具有直接相关性。 这些测量结果将改善塑料闪烁体检测器的能量非线性建模。 特别是,更新的能量响应模型将改善基于Chandler反应器中微子检测器技术的检测器的快速中子建模。42±1。00)×10-5(g / cm 2 / meV)2。该结果涵盖了一个独特的能量范围,该能量范围与反应器反向β衰变检测器中的快速中子背景具有直接相关性。这些测量结果将改善塑料闪烁体检测器的能量非线性建模。,更新的能量响应模型将改善基于Chandler反应器中微子检测器技术的检测器的快速中子建模。
I. 引言 工业界、研究机构和学术界使用专门的辐照设备对微电子元件进行辐照试验,以研究单粒子效应 (SEE)。具体来说,散裂设备试图重现感兴趣的辐射环境,获得超过数百 MeV 的能量范围。只有大型加速器才能达到如此高的能量,因此全球范围内的可用性有限。在欧洲,用于微电子测试的两种散裂设备是啁啾辐照 (ChipIr) 和欧洲核子研究中心高能加速器混合场 (CHARM)。ChipIr 是英国卢瑟福·阿普尔顿实验室的光束线,它利用 ISIS 加速器的 800 MeV 质子在钨靶上的散裂来产生类似大气的中子束 [1]。 CHARM 是位于瑞士 CERN 的设施,它使用 PS 加速器的 24 GeV 质子作用于铜靶,产生高能强子混合场,主要为中子,但也包括质子、介子和 K 介子 [2]。根据辐射场的性质,ChipIr 主要用于地面或飞行高度测试,而 CHARM 则专用于加速器或太空应用。两者需要进行详细交叉校准的原因
混凝土孔隙溶液中存在的氯离子是钢筋腐蚀的重要因素。因此,需要尽早检测孔隙溶液中氯化物浓度的升高。为了实现这种早期检测,理想的做法是在混凝土结构内部部署传感器。这样可以实时采样最靠近钢筋的孔隙溶液。要实现这一点,需要有一个基于无线通信的系统,使传感器能够在结构内进行通信。这将避免有线通信方法,因为有线通信方法会带来脆弱性和实施困难。这篇文献综述论文致力于研究可以利用来穿透不透明混凝土结构的各种辐射类型。根据一组参数审查和评估了利用射频辐射、超声波辐射、X 射线辐射和中子束辐射物理的潜在数据传输方法。本文根据系统大小、电源要求、传输范围、电路复杂性和安全问题对每种辐射类型进行评分。通过这些评分,对每一种传输技术进行评分,看它们是否有潜力成为构建微米级混凝土内数据传输系统的基础。本文表明,超声波辐射是用于这种应用的最有前途的辐射技术。
摘要 - 在图形处理单元(GPU)上执行的深神经网络(DNN)的可靠性评估是一个具有挑战性的问题,因为硬件体系结构非常复杂,软件框架由许多抽象层组成。虽然软件级故障注入是评估复杂应用程序可靠性的一种常见且快速的方法,但它可能会产生不切实际的结果,因为它对硬件资源的访问有限,并且采用的故障模型可能太幼稚(即单位和双位翻转)。相反,用中子光束注射物理断层提供了现实的错误率,但缺乏故障传播可见性。本文提出了DNN故障模型的表征,该模型在软件级别结合了中子束实验和故障注入。我们将运行一般矩阵乘法(GEMM)和DNN的GPU暴露于梁中子,以测量其错误率。在DNNS上,我们观察到关键错误的百分比可能高达61%,并表明ECC在减少关键错误方面无效。然后,我们使用RTL模拟得出的故障模型进行了互补的软件级故障注入。我们的结果表明,通过注射复杂的断层模型,Yolov3的误导率被验证为非常接近通过光束实验测得的速率,该速率比仅使用单位倒换的断层注射测量的频率高8.66倍。
需要在硼中子捕获(BNCT)中的治疗计划与其他放射性疗法和专用方法不同。患者内部的核相互作用必须对剂量计算进行建模。由于缺乏更精确的数据,患者组织是根据通常从ICRU报告中获取的平均元素组成来定义的[1,2]。10 B的浓度相对于基于已公布数据的血液硼浓度估计。通常只能精确地定义血液的浓度。In BNCT treatment planning, four dose components are calculated: 1) high-LET boron dose due to the alpha particle and 7 Li nucleus released in 10 B( n , ) capture reaction at thermal neutron energies, 2) intermediate-LET thermal neutron dose primarily due to the protons (E=0.54 MeV) released in nitrogen neutron capture reaction 14 N( n , p ) 14 C in tissue, 3)中间 - 让快速中子剂量主要是由于1 h(n,n')1 h反应中释放的后方质子和4)在氢中子中子捕获反应中从组织中1 h(n,)2 h(n,= 2.2 meV)中的低LET光子剂量在组织中,通常在中子束中存在低γ污染物。到目前为止,只有蒙特卡洛方法已成功地用作剂量计算工具。通常使用Funlence-to-Kerma转换因子来定义剂量(kerma近似)。另一种选择是计算每个中子和光子相互作用或分别通过每个二次粒子沉积的能量。BNCT不存在龙门群体系统。现有的BNCT中子源具有固定的光束,这意味着必须将患者旋转到最佳治疗方向。旨在定义与光子放射疗法临床效果相对应的单位的患者剂量,每个剂量成分乘以相对生物学有效性(RBE)因子(传统方法)或生物剂量功能,例如光子等效剂量剂量模型[3,4]或微氨基化剂量学模型[5]。治疗计划图像应在计划方向上最佳拍摄。在本文中,审查了当前用于满足BNCT剂量计算和治疗计划独特需求的方法。