在原子尺度上设计和表征量子多体系统对于理解强关联物理和量子信息处理至关重要。最近,将电子自旋共振 (ESR) 与扫描隧道显微镜 (STM) 相结合,可以高精度地探索表面上相互作用的自旋 [1]。ESR-STM 的亚埃空间分辨率和超高能量分辨率使我们能够测量单个原子之间的磁相互作用、检测单个核自旋以及探索工程自旋阵列中的量子涨落。在本次演讲中,我将介绍我们最近使用 ESR-STM 从绝缘膜上的原子自旋构建拓扑量子磁体的努力 [2]。这些拓扑量子磁体包括自旋 1/2 链和二维自旋 1/2 阵列。我们设计了量子自旋模型的拓扑相和平凡相,从而实现了一阶和二阶拓扑量子磁体。它们的多体激发由能量分辨率优于 100 neV 的单原子 ESR 探测。我们进一步可视化了各种多体拓扑束缚模式,包括拓扑边缘态和高阶角模式。这些结果为模拟相互作用自旋的量子多体相提供了一种重要的自下而上的方法来模拟。[1] K. Yang 等人。Nat. Commun. 12, 993 (2021) [2] H. Wang 等人。Nat. Nanotechnol. (2024) https://doi.org/10.1038/s41565-024-01775-2
校正(QEC),横向和非转交逻辑门及其对普遍性的影响。然后,我将重点介绍Rydberg Atom阵列作为FTQC平台的特定优势和机会,并展示其独特功能(例如非本地连接性,平行的闸门动作,集体活动性,集体移动性以及本地多控制的Gates)如何使用诸如魔术和良好的魔术集合,以实现魔术,并在魔术中实现魔术,以实现魔术,并使用魔术。受控-z代码(https://arxiv.org/abs/2312.09111)。
探索奇异的电子订单及其潜在的驱动力仍然是量子材料领域的中心追求。在这种情况下,Kagome Lattice是一个转角共享的三角网络,已成为探索非常规相关和拓扑量子状态的多功能平台。Due to the unique correlation effects and frustrated lattice geometry inherent to kagome lattices, several families of kagome metals have been found to display a variety of exotic electronic instabilities and nontrivial topologies, including unconventional superconductivity, charge density wave orders, and electronic nematicity, reminiscent of the complex competing orders observed in high-temperature superconductors.在此背景下,Kagome Systems提供了一个出色的量子操场,可深入研究非常规电子不稳定性的起源。在这次演讲中,我将介绍我们最近的工作,重点介绍了两个著名的kagome超导体:V 3 SB 5(a = k,rb,cs)中的非常规CDW,以及在Ti 3 Bi 5中观察到的电子nematicities。尤其是从源自角度分辨光发射光谱(ARPES)的见解中绘制的,我将突出这些系统的独特特征,阐明它们有趣的电子行为并阐明其潜在机制。
量子厅效应的发现已确立了拓扑凝结物理学领域的基础。对现在在量子计量学中所采用的霍尔电导的精确量化,由于其拓扑保护而在任何合理的扰动中都是稳定的。相反,后者暗示了一种审查形式,通过向观察者隐瞒任何当地信息。量子厅系统中电流的空间分布就是这样的信息,由于最近的进步,该信息现在已成为实验探针的访问。是一个古老的问题,是否原始的和直观地引人注目的电流理论图片沿着样品边缘流动在狭窄的通道中,是物理上正确的。是由最近在Chern绝缘子中量化电流的局部成像的动机[Rosen等,Phys。修订版Lett。 129,246602(2022); Ferguson等,Nat。 mater。 22,1100-1105(2023)],从理论上讲,我们证明了一个宽阔的“边缘状态”的可能性,通常从样品边界深入到大块的样品边界上。 此外,我们表明,通过改变实验参数,人们可以在边缘状态狭窄和蜿蜒通道之间连续调整,一直到主要发生的电荷运输。 这说明了在实验中观察到的各种特征和不同的特征。 参考:PNAS,121号 39 E2410703121(2024)Lett。129,246602(2022); Ferguson等,Nat。mater。22,1100-1105(2023)],从理论上讲,我们证明了一个宽阔的“边缘状态”的可能性,通常从样品边界深入到大块的样品边界上。此外,我们表明,通过改变实验参数,人们可以在边缘状态狭窄和蜿蜒通道之间连续调整,一直到主要发生的电荷运输。这说明了在实验中观察到的各种特征和不同的特征。参考:PNAS,121号39 E2410703121(2024)总的来说,我们的发现强调了拓扑凝结物理学的鲁棒性,但也揭示了现象学的丰富性,直到最近被拓扑审查制度隐藏了,我们认为其中大多数仍然有待发现。
This course aims at introducing the basic concepts and techniques in carrying out chemical analysis by using various modern spectroscopic and chromatographic instruments.Students will learn how to use modern instruments to determine the amounts of substances present in a mixture down to part per million levels (ppm), and identify the structure of a compound.Techniques such as UV-visible spectroscopy, infrared spectroscopy, mass spectrometry, nuclear magnetic resonance spectroscopy, gas chromatography and high performance liquid chromatography will be covered.This course will also discuss some common standard practices of collecting and preparing samples for laboratory testing, the accreditation system in testing laboratories.This course is conducted in the format of lecture.本课程旨在介绍化学分析中所用到的现代光谱和色谱仪器的基本概念和技术。学生将学习使用该 等仪器来分析浓度水平低至百万分之一的物质,并确定化合物的结构。课程内容包括紫外 − 可见光 谱法、红外线光谱法、质谱分析法、核磁共振、气相色谱法及高效能液相色谱法的操作技巧,以 及化验工作中的收集及制备样本的常用标准技巧和香港化验室所实行的认可系统。课程以讲课形 式进行。 Medium of Instruction:
在非相对论量子系统中,利布-罗宾逊定理 [1-2] 规定了一个新出现的速度限制 v,在幺正演化下建立了局部性,并限制了执行有用量子任务所需的时间。在本次演讲中,我将介绍我们的工作 [3],即将利布-罗宾逊定理扩展到具有测量和自适应反馈的量子动力学。与测量可以任意违反空间局部性的预期相反,我们发现量子信息的速度最多可以提高 (M+1) 倍,前提是已知 M 个局部测量的结果;即使经典通信是即时的,这也是如此。我们的界限是渐近最优的,并且被现有的基于测量的协议所饱和 [4]。我们严格限制了量子计算、纠错、隐形传态以及从短程纠缠初始状态生成纠缠资源状态(Bell、GHZ、Dicke、W 和自旋压缩状态)的资源要求。我们的研究结果限制了使用测量和主动反馈来加速量子信息处理,并限制了大量已提出的量子技术的可扩展性。参考文献:[1] Lieb 和 Robinson,“量子自旋系统的有限群速度”,Comm. Math. Phys. 28, 251 (1972)。[2] Chen, Lucas 和 Yin,“多体量子动力学中的速度限制和局部性”,arXiv:2303.07386。[3] Friedman, Yin, Hong 和 Lucas,“带测量的量子动力学中的局部性和误差校正”,arXiv:2206.09929。[4] Briegel, Dur, Cirac 和 Zoller,“量子中继器:不完美局部操作在量子通信中的作用”,Phys. Rev. Lett. 81, 5932 (1998)。
量子力学的很大一部分效力在热平衡中被掩盖。不同的领域依赖于创建远离平衡的量子相,例如量子化粒子和多体系统,它们应用于量子信息处理和存储。超快太赫兹频率 (THz) 激光脉冲具有实现由集体量子效应决定的非平衡相的诱人能力,因为它们的时间尺度与电子、自旋、晶格离子等的纳米级动力学相称。在本次演讲中,我将展示太赫兹频率脉冲可以控制单个量子点中的通用光致发光闪烁 [1,2],尽管经过了二十年的研究,但这仍然是一个持续的挑战。然后,我将介绍一种用于选择性相位控制的新型非共振激发方法,以 LiNbO 3 中的铁电反转和 SnSe 和 MoTe 2 中的多态跃迁为例,它们与非平凡的能带拓扑交织在一起 [3,4]。最后,我将说明如何利用对太赫兹与物质相互作用的基本理解来设计用于偏振敏感太赫兹成像的纳米光子装置 [5]。[1] Shi, J. 等人。Nat. Nanotechnol. 16, 1355 (2021)。[2] Shi, J. 等人。Nano. Lett. 22, 1718 (2022)。[3] Shi, J. 等人。Nat. Commun.,即将出版。arXiv : 1910.13609 (2023)。[4] Shi, J. 等人。Nat. Phys.,正在审查中。[5] Shi, J. 等人。Nat. Nanotechnol. 17, 1288 (2022)。
中期评估的主要目的是分析该战略的实施过程,根据结果指标评估迄今为止的绩效,并确定对地方自治的影响。与此相关,本报告为该战略实施的下一阶段提出了建议。根据该战略文件第 9 章,MRDI 与格鲁吉亚地方自治单位财务官员协会合作,在美国国际开发署地方治理计划的支持下,对该战略的实施、目标指标的绩效以及所取得的成果对地方自治的估计影响进行了中期评估。中期评估涵盖 2020-2022 年期间。中期评估方法
去中心化金融 (DeFi) 为美国金融体系、消费者和国家安全带来了光明的机遇,也带来了复杂而重大的风险。自比特币推出以来,利用区块链和其他分布式账本技术的应用程序呈指数级增长。这些技术有望提高透明度和效率,扩大基本金融产品和服务的可及性,并建立更具弹性的金融体系。然而,这一前景也伴随着非常大的风险。由于缺乏有效的监管、执法和合规,许多 DeFi 项目、企业和生态系统都容易受到欺诈、管理不善和严重监管违规行为的影响。这些风险因市场波动性极高而加剧,使投资者、客户和其他利益相关者面临重大损失。