为促进规则的全球一致实施,已批准解释,例如,IGC 规则第 4.20.1.2 款规定,T 型焊缝可在 A 型或 B 型独立油舱中使用,该款适用于带中心线舱壁的 C 型独立双叶油舱,并包括对规则其他杂项条款的解释。(UI GC20、GC21、GC22、GC25、GC26、GC27、GC28、GC29) 关于 IGC 规则第 5.4.4 款和第 5.13.2.4 款中提及的气体燃料管道系统外管的统一解释将在 CCC 重新考虑
现有和拟议的出入口、道路、道路通行权或出入口地役权的尺寸、曲线半径和中心线 _________ 距现场 250 英尺内的对面车道和交叉路口 _________ 拟建道路、车道、停车场、人行道和非机动车道的横截面细节,说明材料和厚度 _________ 加速、减速和超车道的尺寸 _________ 停车位、安全岛、交通通道和装卸区的尺寸 _________ 所需停车位和装卸位数量的计算 _________ 消防通道的指定 _________ 交通管制标志和路面标线 _________ 现场或通行权内现有和拟议的人行道/小路的位置 _________ 所有储存区和 设施 _________
船舶的六个自由度 ................................................ ..船舶轴线相对于 Eanh 轴线的相对位置 .................................. .涌浪力与涌浪速度之间的图形关系 阻力曲线的图形表示 ................................ .螺旋操纵的图形表示 ................................ ..舵角和角速度图的绘制:(A)动态稳定船舶 ............................................................. ..舵角和角速度图的绘制:(B)动态不稳定船舶 ............................................................. .. GZ 曲线的图形表示:(A)静态稳定船舶 ............................................................. .GZ 曲线的图形表示:(B)静态不稳定船舶 ................................................................ .. 推力曲线的图形表示 ................................................ ..动态稳定船舶的 Kemf Zig zag 机动 动态不稳定船舶的 Kemf Zig zag 机动 ............................................................................................................. .阻力曲线的图形说明 ............................................................................. .比例模型阻力曲线的图形表示 .. .. 纵向拖曳时舵处于攻角的模型方向 ............................................................................. ..显示测量的偏航力矩和舵角的图表 ............................................................................................. .显示测量的摇摆力和舵角的图表 ...... .比例模型阻力曲线图 ................................ ..攻角模型方位图:(A)舵与模型中心线对齐 ........................ .攻角模型方位图:(B)舵与拖曳水池中心线对齐 ........................ .. JL/测量比例模型图示:偏航力矩与摇摆速度图 ........................ .测量比例模型图示:摇摆力与摇摆速度图 ................................ ..平面运动机构图示 ................................ .船首和船尾之间相位差为零的模型轨迹 ............................................................................................. .PM M 下模型的正弦路径...................................... ..模型的旋转臂运动................................................ ..显示测量的摇摆力与角速度的关系的图表............................................................................................. .显示测量的偏航力矩与角速度的关系的图表............................................................................................. ..
RWT 的压力环 1 的安装方式与 LSWT 类似,即它们位于收缩段的前后。这些压力环从未校准过,因此迄今为止未在任何测试中使用过。RWT 测试段的横截面形状在几何上与 LSWT 相似,并且两个风洞具有相同的收缩率。因此,对 RWT 压力环进行了与 [2] 和 [3] 类似的校准技术。然而,[2] 和 [3] 发现校准因子不会随着测试段内的流向位置而发生显著变化。此外,RWT 通常不用于高保真度测试,并且模型通常不会跨越测试段的长度。因此,RWT 内的校准因子仅在一个中心线站获得,适用于两种情况:
飞行员座椅(前面的图 1 和图 2)被迫在滑轨之间向下移动,座椅调节器导轨出现严重弯曲。调节器导轨管的上表面有一个明显的刻痕,与销定位孔的中心线偏移。孔边缘也有毛刺的痕迹,同样偏移。图 9 显示了刻痕和毛刺。此标记和孔毛刺从调节器导轨最前面的孔延伸到第四个孔。管的严重弯曲使其余孔进一步向后变形,以至于孔五和孔六“闭合”,孔七隐藏在沿着导轨延伸的座椅导管内。
RWT 的压力环 1 的安装方式与 LSWT 类似,即分别位于收缩段之前和之后。这些压力环从未校准过,因此迄今为止未在任何测试中使用过。RWT 测试段的横截面形状在几何上与 LSWT 相似,并且两个风洞具有相同的收缩率。因此,对 RWT 压力环执行了与 [ 2 ] 和 [ 3 ] 类似的校准技术。然而,[ 2 ] 和 [ 3 ] 发现校准因子不会随着测试段内的流向位置而发生显著变化。此外,RWT 通常不用于高保真度测试,并且模型通常不会跨越测试段的长度。因此,RWT 内的校准因子仅在一个中心线站获得,适用于两种情况:
a. 周一至周五进行高强度固定翼飞行训练,直升机在 10 海里半径范围内定期移动,并可能同时进行两条跑道操作。300 英尺以下机场上的直升机移动不会通知环路交通。b. 飞机静止时使用再加热可能会损坏跑道表面。ci 跑道 13 - 房屋,距门槛 810 英尺,海拔 63 英尺,中心线左侧 370 英尺;地面,距门槛 1,810 英尺,海拔 77 英尺。ii. 跑道 01 - 围栏,距门槛 400 英尺,海拔 28 英尺,中心线右侧 60 英尺。iii. 跑道 19 - 铁路,距门槛 600 英尺,海拔 43 英尺。d.由于 SRE 性能不佳,在 100R 和 210R 之间 12 海里 VYL TACAN 之外,交通信息可能会有限。e. 固定翼飞机和直升机适用特殊程序。请参阅 TAP。f. 由于高强度的 4FTS 飞行,所有来访飞机必须携带 15 分钟的等待燃料。g. 所有来访飞机的最小刹车高度为 1,000 英尺。h. 仅限周六、周日和公共假日。模型飞机飞行将在以废弃的 26 号跑道中心、高度 1500 英尺 AGL 为中心 0.5 海里半径范围内进行。i. 根据 MAA/EXEMPTION/2014/20,皇家空军谷不受 RA 3500 要求的约束。因此,未满足最低跑道末端安全区 (RESA) 要求。游客请注意,跑道护栏会对飞机造成冲出跑道的风险。
a. 周一至周五进行高强度固定翼飞行训练,直升机在 10 海里半径范围内定期移动,并可能同时进行两条跑道操作。300 英尺以下机场上的直升机移动不会通知环路交通。b. 飞机静止时使用再加热可能会损坏跑道表面。ci 跑道 13 - 房屋,距门槛 810 英尺,海拔 63 英尺,中心线左侧 370 英尺;地面,距门槛 1,810 英尺,海拔 77 英尺。ii. 跑道 01 - 围栏,距门槛 400 英尺,海拔 28 英尺,中心线右侧 60 英尺。iii. 跑道 19 - 铁路,距门槛 600 英尺,海拔 43 英尺。d.由于 SRE 性能不佳,在 100R 和 210R 之间 12 海里 VYL TACAN 之外,交通信息可能会有限。e. 固定翼飞机和直升机适用特殊程序。请参阅 TAP。f. 由于高强度的 4FTS 飞行,所有来访飞机必须携带 15 分钟的等待燃料。g. 所有来访飞机的最小刹车高度为 1,000 英尺。h. 仅限周六、周日和公共假日。模型飞机飞行将在以废弃的 26 号跑道中心、高度 1500 英尺 AGL 为中心 0.5 海里半径范围内进行。i. 根据 MAA/EXEMPTION/2014/20,皇家空军谷不受 RA 3500 要求的约束。因此,未满足最低跑道末端安全区 (RESA) 要求。游客请注意,跑道护栏会对飞机造成冲出跑道的风险。
ASV的框架基于一对泡沫填充的玻璃纤维壳,如图2所示,与形成浮桥相连。这种设计允许轻巧但浮力的船体,即使玻璃纤维壳受损,它们也可以保持正浮力。ASV配备了四个蓝色机器人T-200推进器,从策略上安装的角度约为135度,相对于船体中心线。将其位于弓箭附近的每个浮桥龙骨的龙骨上,该配置提供了自动运动,从而允许ASV精确有效的可操作性。ASV的推进器通过动态调整其旋转方向和速度来实现纵向,横向和旋转运动,提供精确且通用的可操作性,如图3所示。
日本数据周刊 - 昆士兰州州昆士兰州的整个国家 - 昆士兰州,昆士兰州的道路和轨道,州控制道路,调查中心线 - 昆士兰州 - 昆士兰州©昆士兰州©昆士兰州(资源部)(资源部)2023年。考拉优先区v1.0,考拉栖息地区域v2.0,MSE-受监管的植被 - 基本栖息地,MSE-野生动物栖息地 - 濒危或脆弱的野生动植物,MSES-野生动物栖息地 - 特殊关注的动物动物:昆士兰州©昆士兰州(环境和科学局)2023