摘要 — 在三相四线低压配电系统中,不平衡负载会导致中性电流 (NC) 形成环路,从而导致功率损耗增加和中性电位变化。与传统电力变压器相比,智能变压器 (ST) 具有严格的电流限制以避免过流。然而,其在下游低压电网电压调节方面的优势可以提供调节过度 NC 的能力。本文提出了一种闭环 NC 优化控制,一方面,在满足标准 EN 50160 要求的正常运行中最小化 NC 电流,另一方面,在极端情况下抑制 NC 电流以避免 ST 过流损坏。根据曼彻斯特地区三相四线配电网,通过硬件在环设置和基于不平衡负载曲线下的 350kVA、10kV/400V、ST 供电配电网的案例研究,通过实验测试验证了所提出的控制策略。结果清楚地证明了所提出的NC优化控制策略对NC抑制和最小化的有效性和灵活性。
• 所有开关均具有相同的 V d /2 电压额定值。 • S 5 和 S 6 可以通过二极管实现。 • 4 个受控设备和 2 个不受控设备。
摘要 由电池和其他储能设备(ESD)(例如超级电容器)供电的电动汽车(EV)有望在更可持续的未来发展中发挥重要作用。在此背景下,充电站(CS)应该成为电池充电的主要能源,并且严重依赖电力电子转换器。本文分析了一种用于 CS 应用的双向单相三级堆叠中性点钳位(3L-SNPC)转换器,该转换器可以根据电流流向充当整流器或逆变器。此外,得出的分析可以轻松扩展到三相版本的开发。考虑到 CS 能够整合公用电网和可再生能源,因此可以以高功率因数和降低电流谐波含量的方式吸收或向交流电网注入能量。双向拓扑的主要优点是,每个支路和中性点上都有三级电压波形,而与电动汽车电流互感器中使用的典型两级结构相比,滤波要求有所降低;所有半导体上的电压应力等于总直流链路电压的一半;在任何操作模式下,功率因数几乎为 1;直流链路电容器两端的电压是平衡的。本文介绍了功率和控制级的详细设计,并详细讨论了实验室原型的实验结果。
反向 1 必要 nu yy oc nu 通过实验确定转动惯量,并估算固定翼无人机 (UAV) 的纵向和横向静态和动态稳定性和控制导数。根据估算的导数,预测了对各种输入的动态响应。发现了一种发散螺旋模式,但是没有预测到特别危险的动态。然后为飞机安装了空速指示器,结合通过飞行控制发射器上的配平设置确定升降舵偏转的能力,可以通过飞行测试确定飞机的中性点。通过实验确定的中性点与理论中性点很好地对应。然而,计划使用改进的仪器进行进一步的飞行测试,以提高中性点位置的置信度。进一步的飞行测试还将包括动态研究,以改进估算的稳定性和控制导数。
反向 1 必要 nu yy oc nu 通过实验确定转动惯量,并估算固定翼无人机 (UAV) 的纵向和横向静态和动态稳定性和控制导数。根据估算的导数,预测了对各种输入的动态响应。发现了一种发散螺旋模式,但是没有预测到特别危险的动态。然后为飞机安装了空速指示器,结合通过飞行控制发射器上的配平设置确定升降舵偏转的能力,可以通过飞行测试确定飞机的中性点。通过实验确定的中性点与理论中性点很好地对应。然而,计划使用改进的仪器进行进一步的飞行测试,以提高中性点位置的置信度。进一步的飞行测试还将包括动态研究,以改进估算的稳定性和控制导数。
反向 1 必要 nu yy oc nu 通过实验确定转动惯量,并估算固定翼无人机 (UAV) 的纵向和横向静态和动态稳定性和控制导数。根据估算的导数,预测了对各种输入的动态响应。发现了一种发散螺旋模式,但是没有预测到特别危险的动态。然后为飞机安装了空速指示器,结合通过飞行控制发射器上的配平设置确定升降舵偏转的能力,可以通过飞行测试确定飞机的中性点。通过实验确定的中性点与理论中性点很好地对应。然而,计划使用改进的仪器进行进一步的飞行测试,以提高中性点位置的置信度。进一步的飞行测试还将包括动态研究,以改进估算的稳定性和控制导数。
通过实验确定了惯性矩,并估算了固定翼无人机 (UAV) 的纵向和横向静态和动态稳定性和控制导数。根据估算的导数预测了对各种输入的动态响应。揭示了发散螺旋模式,但没有预测到特别危险的动态。然后为飞机配备了空速指示器,当结合通过飞行控制发射器上的微调设置确定升降舵偏转的能力时,可以通过飞行测试确定飞机的中性点。通过实验确定的中性点与理论中性点非常吻合。但是,计划使用改进的仪器进行进一步的飞行测试,以提高中性点位置的置信度。进一步的飞行测试还将包括动态研究,以改进估计的稳定性和控制导数。
反向 1 必要 nu yy oc nu 通过实验确定转动惯量,并估算固定翼无人机 (UAV) 的纵向和横向静态和动态稳定性和控制导数。根据估算的导数,预测了对各种输入的动态响应。发现了一种发散螺旋模式,但是没有预测到特别危险的动态。然后为飞机安装了空速指示器,结合通过飞行控制发射器上的配平设置确定升降舵偏转的能力,可以通过飞行测试确定飞机的中性点。通过实验确定的中性点与理论中性点很好地对应。然而,计划使用改进的仪器进行进一步的飞行测试,以提高中性点位置的置信度。进一步的飞行测试还将包括动态研究,以改进估算的稳定性和控制导数。
• BESS 使用隔离拓扑(例如双有源桥 (DAB) 后接有源前端转换器 (AFEC))集成到 MV 电网(2.3 kV、4.16 kV 或 13.8 kV) • 与两级拓扑相比,3 级中性点钳位拓扑既降低了滤波器要求,又降低了 SiC MOSFET 两端的电压应力 • 根据电网电压,可以串联 SiC 3.3 kV MOSFET 二极管器件