The molecular basis for DNA-binding by competence T4P is distinct in Gram-positive and Gram-negative species Nicholas D. Christman 1 and Ankur B. Dalia 1, * 1 Department of Biology, Indiana University, Bloomington, IN *Correspondence to: ankdalia@iu.edu ABSTRACT Competence type IV pili (T4P) are bacterial surface appendages that facilitate DNA uptake during通过自然转化的水平基因转移。这些动态结构从细胞表面积极延伸,与环境中的DNA结合,然后缩回以将结合的DNA进口到细胞中。能力T4P在不同的革兰氏阴性(DIDERS)和革兰氏阳性(单胚层)细菌中发现。虽然DIDERM能力T4P的DNA结合机制已成为强化研究的最近重点,但对单胚层能力T4P的DNA结合知之甚少。在这里,我们使用肺炎链球菌作为模型系统来解决此问题。能力T4P可能通过称为次要PILIN的尖端相关的蛋白质复合物与DNA结合,最近的工作突出了单胚层和DIDERM能力T4P之间的高度结构保护。在diderms中,一个次要的pilin fimt中带正电荷的残基对于DNA结合至关重要。我们表明,尽管这些残基在comgd中保存下来,但它们的单胚层同源物,但它们仅在DNA吸收中起较小的作用以进行自然转化。相反,我们发现邻近的小pilin comgf(单胚层的PILW同源物)中有两孔充电的残基在自然转化的DNA吸收中起主要作用。在diderm和单胚层中,一个此外,我们发现这些残基在其他单死机中是保守的,但不是diderms。在一起,这些结果表明,DNA结合的分子基础在单胚层和DIDERS能力T4P中独立发散或演变。作者摘要多种细菌使用称为IV型pili型能力(T4P)的细胞外结构,从其环境中吸收DNA。T4P对DNA的摄取是自然转化的第一步,这是一种水平基因转移模式,有助于抗生素抗性和毒力性状在各种临床上相关的革兰氏阴性(DIDERM)和革兰氏阳性(革兰氏阳性(单一型)细菌种类物种中的传播。虽然能力T4P在DIDERMS中的DNA结合的机理一直是最近研究的领域,但对单胚层能力T4P如何结合DNA的了解相对较少。在这里,我们探讨了单胚层能力T4P如何使用肺炎链球菌作为模型系统结合DNA。我们的结果表明,虽然单胚层T4P和DIDERS T4P可能具有保守的结构特征,但每个系统的DNA结合机制都是不同的。引言自然转化(NT;也称为遗传转化或自然能力)是多种细菌和古细菌中水平基因转移的广泛保守机制[1]。在此过程中,细胞从环境中占用自由DNA,通过同源重组将其整合到其基因组中。NT的第一步是细胞外DNA的吸收,这是由称为能力T4P的动态表面附属物促进的。能力T4P积极延伸到细胞外环境,与游离DNA结合,然后缩回以促进DNA的摄取,如Diderm Vibrio cholerae [2]和单肽S.肺炎[3]中所示。由细胞质ATPase Motor提供动力的跨膜分子机支持了Pili的主动延伸和缩回[4-6]。通过这种活性,T4P的能力促进了双链DNA在DIDERMS中的prode骨中的吸收,或单胚层中细胞壁和细胞质膜之间的空间(即“革兰氏阳性的periplasm” [7])。这种DNA的弯曲被ComeA结合,ComeA是一种周围(DIDERS)或膜上的(单胚层)DNA结合蛋白,该蛋白充当分子棘轮,以进一步驱动DNA摄取[8-10]。
表1-用IPTM分数作为预测变量获得的AUC值和不同的AlphaFold2选项。AUC值之间的差异在不同的MSA配对和回收模式(在最后一行中)或由不同网络生成的模型(在每个列中)获得的最佳模型之间的差异在统计学上没有统计学意义。
一般权利 一般权利 PEARL 中的所有内容均受版权法保护。作者手稿根据出版商政策提供。请使用项目记录或文档中提供的详细信息仅引用已发布的版本。在没有开放许可证(例如知识共享)的情况下,应从出版商或作者处获得进一步重复使用内容的许可。 删除政策 删除政策 如果您认为此文档侵犯了版权,请联系图书馆提供详细信息,我们将立即删除对该作品的访问权限并调查您的索赔。 关注此作品和其他作品:https://pearl.plymouth.ac.uk/secam-research
HAL 是一个多学科开放存取档案库,用于存放和传播科学研究文献,无论这些文献是否已出版。这些文献可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
常见 B 型 DNA 和其他 DNA 构象之间的动态结构转变为基因表达提供了额外的调控层。1–4 G-四链体 (G4) 和 i-基序 (iM) 是两类重要的非规范 DNA 结构,分别在人类基因组中某些富含鸟嘌呤和胞嘧啶的区域形成。由于 iM 结构是通过堆叠插入的半质子化胞嘧啶碱基对 (C+:C) 形成的,因此最初认为 iM 的形成需要弱酸性 pH 值,然而,现在已经确定这些结构是在细胞环境中的生理 pH 值下形成的。5,6 G4 结构由 pi 堆叠的平面 G 四联体形成,其中每个 G 四联体由四个鸟嘌呤碱基组成,通过 Hoogsteen 氢键结合在一起,并通过生理相关的阳离子进一步稳定。 7–10 G4 和 iM 折叠机制已用于预测它们在基因组中形成的倾向以及它们在调控区域中的过度表达。5,11 此外,它们的结构特征
通常需要进行肾活检以诊断肾脏疾病的类型和阶段,或确定肾移植功能障碍的原因。病理学家使用各种(免疫)组织化学染色对活检玻片进行目视评估,以识别有助于诊断的独特模式。此外,分级系统用于表示病理变化的严重程度,例如(无)瘢痕肾实质的炎症程度 [1]。尽管病理学家在这种模式识别和量化方面训练有素,但得到的评分仍然是半定量的,并不总是可重复的,并且在临床实践中的预测价值有限。此外,在大型研究环境中对组织玻片进行评分可能是一项繁琐的任务。因此,需要一些工具来促进肾脏病理学的客观、定量评分,从而可能发现可以(更好地)预测肾脏疾病病程或评估治疗反应的标志。人工智能(AI)有潜力产生这样的工具[2,3]。
尽管视觉模型(VLMS)具有多功能视觉效果(VLMS)的功能,但在现有的VLM框架内仍存在两个实质性挑战:(1)缺乏预读和视觉指导调谐方面的任务多样性,以及(2)注释错误和偏见GPT-4综合教学指导性的指导性数据。这两种挑战都导致了诸如不良的普遍性,幻觉和灾难性遗忘之类的问题。为了应对这些挑战,我们构建了v Ision -f LAN,这是迄今为止最多样化的视觉指导调整数据集,包括187个不同的任务和1,664,261个实例,来自学术数据集,每个任务都伴随着专家写作的指导。此外,我们提出了一个两阶段的指令调整框架,其中首先在V Ision -F LAN上对VLM进行了填充,并在GPT-4合成数据上进一步调整。我们发现这个两阶段的调谐框架显着超过了传统的单阶段视觉教学调音框架,并在广泛的多模式评估基准中实现了最新的效果。最后,我们进行了深入的分析以了解视觉指导的调整,我们的发现表明:(1)GPT-4合成数据并不能基本上增强VLMS的功能,而是模型对模型对人类偏爱格式的响应; (2)最小数量(例如1,000)GPT-4合成数据可以有效地使VLM响应与人类偏爱相一致; (3)视觉指导调整主要帮助大语言模型(LLMS)了解视觉特征。我们的数据集和模型可在https://github.com/vt-nlp/ vision-flan上公开获取。
1匈牙利生物学研究中心生物物理学研究所,匈牙利,匈牙利2号,神经病学系,阿尔伯特·塞津·埃吉·里吉健康中心,匈牙利大学,匈牙利,匈牙利大学,3个理论医学博士学位学校 Medical School, University of Szeged, Szeged, Hungary, 5 Interdisciplinary Medicine Doctoral School, University of Szeged, Szeged, Hungary, 6 Second Department Cardiology Center, Albert Szent-Gyo¨rgyi Health Center, University of Szeged, Szeged, Hungary, 7 Department of Family Medicine, Albert Szent-Gyo¨rgyi Health Center, University of Szeged, Szeged, Hungary, 8个Onrapy的部门,Szeged,Szeged,匈牙利,9号内科,Albert Szent-Szent-gyoérgyiHealth Center,Szeged University of Szeged,Szeged,匈牙利,医学物理学和信息学系10
线粒体融合和裂变伴随着压力和代谢需求改变的适应性反应。内膜融合和CRISTAE形态发生取决于视觉萎缩1(OPA1),它以不同的同工型表达,并从膜结合的裂解,长到可溶的短形式。在这里,我们通过生成仅表达一种可裂解的OPA1同工型或不可裂解的变体来分析OPA1同工型和OPA1处理的物理学作用。我们的结果表明,单个可裂解或不可裂解的OPA1同工型的表达可保留胚胎发育和成年小鼠的健康。OPA1处理在代谢和热应力下是可分配的,但可以延长寿命,并预防缺乏OXPHOS缺陷COX10 - / - 小鼠中的线粒体心脏肌病。从机械上讲,OPA1处理的损失会破坏线粒体生物发生和线粒体之间的平衡,从而抑制了Cox10 - / - 心脏中心脏肥大的生长。我们的结果突出了OPA1加工,线粒体动力学和心脏肥大的代谢的关键调节作用。