1 莱布尼茨神经生物学研究所,学习和记忆遗传学系,马格德堡,39118,德国,2 莱比锡大学生物研究所动物生理学系,莱比锡,04103,德国,3 莱比锡大学生物研究所遗传学系,莱比锡,04103,德国,4 魏茨曼科学研究所分子细胞生物学系,雷霍沃特,7610001,以色列,5 亚琛工业大学成像和计算机视觉研究所,亚琛,52074,德国,6 波多黎各大学医学科学园区神经生物学研究所,旧圣胡安,波多黎各,00901,7 剑桥大学生理学、发育和神经科学系,剑桥,CB2 3EL,英国,8 珍妮莉亚研究园区,霍华德休斯医学研究所,阿什本, 20147,弗吉尼亚州,9 莱布尼茨神经生物学研究所,组合神经影像核心设施,马格德堡,39118,德国,10 加利福尼亚大学,分子,细胞和发育生物学系,加利福尼亚州洛杉矶 90095-1606,11 巴黎萨克雷大学,国立科学研究中心,巴黎萨克雷神经科学研究所,萨克雷,91400,法国,12 行为脑科学中心,马格德堡,39106,德国,13 奥托冯格里克大学生物学研究所,马格德堡,39120,德国
1 莱布尼茨神经生物学研究所,学习和记忆遗传学系,马格德堡,39118,德国,2 莱比锡大学生物研究所动物生理学系,莱比锡,04103,德国,3 莱比锡大学生物研究所遗传学系,莱比锡,04103,德国,4 魏茨曼科学研究所分子细胞生物学系,雷霍沃特,7610001,以色列,5 亚琛工业大学成像和计算机视觉研究所,亚琛,52074,德国,6 波多黎各大学医学科学园区神经生物学研究所,旧圣胡安,波多黎各,00901,7 剑桥大学生理学、发育和神经科学系,剑桥,CB2 3EL,英国,8 珍妮莉亚研究园区,霍华德休斯医学研究所,阿什本, 20147,弗吉尼亚州,9 莱布尼茨神经生物学研究所,组合神经影像核心设施,马格德堡,39118,德国,10 加利福尼亚大学,分子,细胞和发育生物学系,加利福尼亚州洛杉矶 90095-1606,11 巴黎萨克雷大学,国立科学研究中心,巴黎萨克雷神经科学研究所,萨克雷,91400,法国,12 行为脑科学中心,马格德堡,39106,德国,13 奥托冯格里克大学生物学研究所,马格德堡,39120,德国
基于 EEG 的神经反馈使用心理行为 (MB) 来实现大脑活动的自愿自我调节,并有可能缓解脊髓损伤 (SCI) 后的中枢神经性疼痛 (CNP)。本研究旨在了解神经反馈学习以及 MB 与神经反馈成功之间的关系。25 名非 CNP 参与者和 10 名 CNP 参与者在四次访问中接受了神经反馈训练(强化 9-12 Hz;抑制 4-8 Hz 和 20-30 Hz)。每次访问后,都会采访参与者关于他们使用的 MB。问卷调查了以下因素:自我效能、控制点、动机和神经反馈的工作量。MB 分为心理策略(目标导向的心理活动)和情感(神经反馈期间的情感体验)。与成功的 CNP 参与者相比,成功的非 CNP 参与者明显使用了更多与想象相关的 MS,并报告了更多负面情感。然而,没有任何心理策略与神经反馈成功明确相关。缺乏成功与消极情绪之间存在一定的联系。自我效能与神经反馈成功率呈中等相关(r = < 0.587,p = < 0.020),而控制点、动机和工作量具有低相关性,不显著(r < 0.300,p > 0.05)。对于成功的神经反馈表现而言,情绪可能比心理策略更重要。自我效能与神经反馈成功率相关,这表明,增加对自己神经反馈能力的信心可能会提高神经反馈表现。
一名69岁的男子,旨在进一步研究多二手菌(液体摄入量为6 L/天)和多尿症(排尿1×/H)。这些症状在第二次AZD1222疫苗接种后两周左右开始。内分泌测试揭示了中枢性糖尿病和轻度催乳激素血症,但没有剩余的下降生理激素轴的基础或动态异常。在脱氨加压素治疗开始后,患者的液体摄入量,尿量和血清钠水平恢复正常。颅磁共振效果显示出典型的垂体炎的发现,这主要是由淋巴细胞渗透降解引起的。鉴别诊断是垂体腺瘤或另一种形式的下生理肿瘤。详尽的诊断检查显示出降压性炎的药物诱发,感染性,可保留性或自身免疫性原因没有迹象。尽管垂体炎的原因通常仍然没有建立,但疫苗接种和发作之间的短时间促使人们怀疑关联。最近已经描述了SARS-COV-2感染或疫苗接种后1-2周(MRNA和Vector疫苗)发作1-2周的进一步的垂体炎。
人们认为,人类自适应地执行各种任务的能力源于认知信息的动态转换。我们假设这些转换是通过“连接中枢”的连接激活实现的。连接中枢是选择性整合感觉、认知和运动激活的大脑区域。我们利用最新进展,利用功能连接映射大脑区域之间的活动流,从认知控制任务期间的 fMRI 数据构建任务执行神经网络模型。我们通过模拟这个经验估计的功能连接模型上的神经活动流,验证了连接中枢在认知计算中的重要性。这些经验指定的模拟通过在连接中枢整合感觉和任务规则激活产生了高于偶然的任务表现(运动反应)。这些发现揭示了连接中心在支持灵活的认知计算中的作用,同时证明了使用经验估计的神经网络模型深入了解人类大脑认知计算的可行性。
中枢神经性疼痛 (CNP) 对大部分脊髓损伤 (SCI) 患者的生活质量产生负面影响。由于目前尚无治愈方法,因此提高我们对 CNP 表现方式的理解、开发用于药物开发的诊断生物标记物以及探索用于个性化治疗的预后生物标记物至关重要。先前的研究发现了分析脑电图 (EEG) 振荡特征的诊断和预后标记物的早期证据。在本文中,我们探讨了非线性非振荡 EEG 特征(特别是 Higuchi 分形维数 (HFD))是否可以用作预后生物标记物,以增加对亚急性 SCI 患者 EEG 的可用分析范围,其中同时具有用于分类疼痛的线性和非线性特征最终可能会提高分类准确性和本质上可转移的分类器。我们专注于想象运动期间记录的 EEG,因为已知运动皮层过度活动与 CNP 之间存在关系。对两个现有数据集进行了分析。第一个数据集包括健全参与者 (N = 10)、慢性 SCI 和慢性 CNP 参与者 (N = 10) 以及慢性 SCI 且无 CNP 的参与者 (N = 10) 的 EEG 记录。我们使用引导程序测试了所有组对中 HFD 的统计学显著差异,发现所有组对在多个电极位置存在显著差异。第二个数据集包括亚急性 SCI 且无 CNP 的参与者 (N = 20) 的 EEG 记录。记录后 6 个月对他们进行随访以测试 CNP,此时 (N = 10) 参与者已患上 CNP,而 (N = 10) 参与者尚未患上 CNP。我们使用引导程序测试了这两组之间的 HFD 统计学显著差异,令人鼓舞的是,还发现多个电极位置存在显著差异。可迁移机器学习分类器仅基于单个 EEG 通道作为输入,就能实现超过 80% 的准确率,区分患有慢性 SCI 的参与者组。最重要的发现是未来和慢性 CNP 具有共同的特征,因此,可以使用相同的分类器来区分两者。这为疼痛慢性化提供了新的见解,表明额叶区域与疼痛的情感方面有关,并且被认为受长期疼痛的影响,在疼痛发展的早期阶段就受到影响。
1运动研究小组疼痛(疼痛),物理疗法,人类生理学和解剖学系,体育与物理疗法学院,Vrije Universiteit Brussel,1090年,布鲁塞尔,比利时,布鲁塞尔; huanyu.xiong@vub.be(h.-y.x。); jolien.hendrix@vub.be(J.H.); arne.wyns@vub.be(A.W。); jente.van.campenhout@vub.be(J.V.C.); andrea.polli@vub.be(A.P。)2比利时3000鲁汶环境与健康中心公共卫生和初级保健中心,比利时3000卢文研究基金会(FWO) - 布鲁塞尔1000,比利时布鲁塞尔4号,伦敦,安大略省西部安大略省大学物理治疗学院,在加拿大N6A 3K7,加拿大N6A 3K7; sschabru@uwo.ca 5 The Gray Centre for Mobility and Activity, Parkwood Institute, London, ON N6A 4V2, Canada 6 Chronic Pain Rehabilitation, Department of Physical Medicine and Physiotherapy, University Hospital Brussels, 1090 Brussels, Belgium 7 Department of Health and Rehabilitation, Unit of Physiotherapy, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of哥德堡,瑞典41390Göterbog *通信:jo.nijs@vub.be2比利时3000鲁汶环境与健康中心公共卫生和初级保健中心,比利时3000卢文研究基金会(FWO) - 布鲁塞尔1000,比利时布鲁塞尔4号,伦敦,安大略省西部安大略省大学物理治疗学院,在加拿大N6A 3K7,加拿大N6A 3K7; sschabru@uwo.ca 5 The Gray Centre for Mobility and Activity, Parkwood Institute, London, ON N6A 4V2, Canada 6 Chronic Pain Rehabilitation, Department of Physical Medicine and Physiotherapy, University Hospital Brussels, 1090 Brussels, Belgium 7 Department of Health and Rehabilitation, Unit of Physiotherapy, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of哥德堡,瑞典41390Göterbog *通信:jo.nijs@vub.be
说话是一个复杂的过程,需要多个大脑区域和发音器官的参与才能发出特定的声音。言语之前,大脑会花上几百毫秒的时间形成口头语言。一项研究 [3] 表明,大脑平均需要 600 毫秒才能产生一个单词。单词和句子包含几种抽象信息,包括词汇、语法、语音和图形信息。这些成分存储在大脑的言语中枢中。在形成单词之前,各个成分会链接在一起,并将有关发音的信息发送到运动中枢,运动中枢控制发音器官的正确运动。由于言语在人脑中表示为由神经细胞通过电脉冲传输的一簇信息,因此我们可以使用脑机接口 [4] 从神经角度研究言语。
运动想象是针对无法执行真实动作的人的一种替代康复策略。然而,它在多大程度上涉及激活深层肌肉结构仍存在争议,而这无法通过表面肌电图 (SEMG) 检测到。16 名身体健全的参与者在四种条件下进行基于提示的等长踝关节跖屈(主动运动),然后进行主动放松:执行具有两个肌肉收缩水平的运动(完全执行和尝试的运动,EM 和 AM)以及有和没有可检测到的肌肉抽搐的运动想象(IT 和 I)。在各种条件下比较了运动相关皮质电位 (MRCP) 的最突出峰值和独特阶段。超声成像 (USI) 和 SEMG 用于检测运动。与 I 和 AM 相比,IT 在主动运动准备和再传入阶段显示出空间上明显的差异;在主动运动执行期间和主动放松准备期间的后部发现 IT 和 AM 之间存在更广泛的差异。 EM 和 AM 在主动运动计划期间在正面表现出最大差异,而在执行主动放松期间在背面表现出最大差异。运动准备阳性 P1 在 IT 和 AM 之间表现出显著的幅度差异,但在 IT 和 I 之间没有差异。USI 可以比 SEMG 更好地检测潜意识运动(抽搐)。MRCP 是一种对不同程度的肌肉收缩和放松敏感的生物标志物。IT 是一种与 I 和 AM 均可区分的运动状态。EEG 运动生物标志物可用于识别在主动收缩或主动放松期间表现出的病理状况。