引言神经血管单元(NVU)由神经元,血管内皮细胞,细胞外基质和血管周围星形胶质细胞,小胶质细胞和周细胞组成,以维持血脑/视网膜屏障和局部CNSSOSTOSTOSIS。NVU的破坏是中枢神经系统的各种缺血/神经退行性疾病的病理生理学的核心,包括缺血性中风,帕金森氏症,帕金森氏症,阿尔茨海默氏症,多发性硬化症,肌萎缩性侧面硬化症和糖尿病性视网膜病变(1-3)。缺血促进了CNS重塑,其中NVU的神经元,神经胶质和微血管细胞之间的神经血管串扰支持有利于组织恢复的微环境。Since multicellular crosstalk between local vascu- lar networks and the neurons they supply in the NVU is critical to maintaining physiological function, one regenerative therapeutic strategy is to repair the dysfunctional NVU using progenitor and/or stem cells to provide support to the complex of vascular endothelial cells and surrounding CNS parenchyma that are functionally coupled and interdependent (4).最近的研究支持使用称为内皮结肠构成细胞(ECFC)的内皮祖细胞的使用来实现这种作用。ECFC在缺血区域的所在地,在许多缺血/神经退行性中枢神经系统疾病的动物模型中表现出有效的救助作用(5-10)。作为大脑的易于访问且可视化的扩展,视网膜是用于建模新型治疗剂临床前发育的缺血/神经退行性中枢神经系统疾病的特殊实验系统。证据表明,ECFC的治疗机制主要是旁分泌。在视网膜缺血/变性的鼠模型中进行的实验提供了证据证据证据,表明ECFC(和其他茎/祖细胞)神经营养不良的支撑可从经历凋亡中引起视网膜神经元(11-17)。尽管在体内具有缺血性/神经退行性CNS疾病模型中其有效的救助效应,但已经观察到脑血管内部的ECFC植入水平较低(5-10)。ECFCS的缺血区域,并假定血管周围位置
免疫系统,干细胞是免疫茎细胞串扰中的活跃参与者。可以很好地确定肠道或神经干细胞可以通过分泌抗炎因子2,4来调节免疫系统。此外,已经表明,干细胞可以根据其活性水平改变主要组织相容性复合物I(MHC-I)的表面表达来调节其免疫特权状态,因此可以通过CD8 +细胞毒素细胞5。因此,免疫系统和组织驻留干细胞之间的双向串扰对于维持组织完整性和驱动再生至关重要1。然而,这种串扰直到最近才在中枢神经系统(CNS)中探索。与其他组织不同,中枢神经系统在解剖学上受到血脑屏障的保护,支持中枢神经系统是免疫特你的器官6。因此,对免疫 - 茎细胞串扰的调查集中在破坏这种障碍的病理情况上。免疫特权中枢神经系统的概念现在受到了在发育和成年期在健康实质中的外周免疫细胞以及Discoveryf脑膜淋巴管10,11的挑战。此外,在健康的中枢神经系统中已经确定了自适应免疫细胞,它们可以改变CNS干细胞行为12,13。这些报告突出了CNS干细胞和免疫系统串扰的新作用,超出了病理状况,为解决中枢神经系统开发,体内平衡和修复的串扰打开了大门。在这篇综述中,我们将把注意力集中在CNS免疫茎细胞轴上在神经炎症和髓磷脂再生的情况下的作用。
维持中枢神经系统的体内平衡。近年来,沿着血管周围空间(DTI-ALP)的扩散张量图像分析已成为一种有价值的非侵入性想象技术,用于评估各种神经系统疾病中的GS功能。从DTI-ALP中得出的Alps索引可以捕获与这些疾病相关的动态变化。本文回顾了GS的结构和功能,DTI-ALP的原理和好处及其在神经疾病中的应用,旨在提供监测疾病进展,评估治疗效率并预测神经疾病的预后的参考。
肺癌是一种恶性肿瘤,在中国和全球范围内发病率高和死亡率。 根据国家癌症中心于2022年发布的“中国癌症发病率和死亡率”的研究,中国新的肺癌的新病例每年达到828,000,死亡人数为每年657,000,其发病率和死亡率均在所有类型的癌症中都排名第一[2]。 在NSCLC患者中,ALK突变的发生率为3%〜7%。 随着中国人口的老龄化以及分子诊断和治疗技术的普及,新的ALK阳性NSCLC患者的诊断率逐年显示出趋势的增加[3]。 crizotinib是第一代ALK抑制剂,其功效明显优于化学疗法,但是疾病的进展仍然发生在几乎一半的患者中,患有大约1年的药物,而Crizotinib对中枢神经系统的穿透能力较弱,无法有效地控制脑部转移和发展脑中的效果,而又不限于脑部转移和发育。肺癌是一种恶性肿瘤,在中国和全球范围内发病率高和死亡率。根据国家癌症中心于2022年发布的“中国癌症发病率和死亡率”的研究,中国新的肺癌的新病例每年达到828,000,死亡人数为每年657,000,其发病率和死亡率均在所有类型的癌症中都排名第一[2]。在NSCLC患者中,ALK突变的发生率为3%〜7%。 随着中国人口的老龄化以及分子诊断和治疗技术的普及,新的ALK阳性NSCLC患者的诊断率逐年显示出趋势的增加[3]。 crizotinib是第一代ALK抑制剂,其功效明显优于化学疗法,但是疾病的进展仍然发生在几乎一半的患者中,患有大约1年的药物,而Crizotinib对中枢神经系统的穿透能力较弱,无法有效地控制脑部转移和发展脑中的效果,而又不限于脑部转移和发育。在NSCLC患者中,ALK突变的发生率为3%〜7%。随着中国人口的老龄化以及分子诊断和治疗技术的普及,新的ALK阳性NSCLC患者的诊断率逐年显示出趋势的增加[3]。crizotinib是第一代ALK抑制剂,其功效明显优于化学疗法,但是疾病的进展仍然发生在几乎一半的患者中,患有大约1年的药物,而Crizotinib对中枢神经系统的穿透能力较弱,无法有效地控制脑部转移和发展脑中的效果,而又不限于脑部转移和发育。
总结今天的早产仍然是医院的常见问题,因为由于器官和系统的不成熟而导致发病和死亡的风险最大。 div>这些孩子暴露于可能影响其成长和发展的环境加重。 div>菌群直接和间接参与中枢神经系统的成熟和保护。 div>在生命的前1000天内存在更不利的因素,健康微生物群(Eubiosis)的建立和成熟可能会受到损害。 div>发生改变(失调)时,已经观察到与各种神经系统疾病的重要相关性。 div>本综述着重于促进这些改变的因素,这些因素可以解释最大的神经系统风险和儿童期的主要相关病理,以便提供预防和及时治疗的动作。 div>关键字:早产新生儿,微生物群,脑关接轴,神经发育障碍。 div>抽象的早产仍然是医院中的常见问题,因为器官和系统的不成熟,导致发病率和死亡率的风险增加。 div>这些孩子暴露于可能影响其成长和发展的环境加剧。 div>微生物群直接和间接参与中枢神经系统的成熟和保护。 div>生命的前1000天中存在的越不利因素,卫生微生物群(Eubiosis)的建立和成熟就越多。 div>发生改变(营养不良)时,已经观察到与各种神经系统疾病的显着相关性。本综述着重于促进这些改变的因素,可以解释神经系统风险增加的机制,以及婴儿期的主要相关病理,以提供预防措施和适当的治疗。关键字:婴儿,早产,微生物群,脑肠轴,神经发育障碍。
尽管用小鼠组织完成了脑器官的第一项工作,但它代表了基于细胞培养的人脑建模之前和之后(Lancaster等,2013)。脑类器官具有高细胞异质性,许多细胞类型都集成到同一系统中。类器官不仅代表了研究健康中神经过程的优势,而且更重要的是在患病的环境中,尤其是那些具有复杂遗传方面的那些在动物中构成挑战的遗传方面。对人类神经系统疾病的临时研究意味着由于遗传背景的多样性,在遗传疾病的情况下,中枢神经系统的结构复杂性(CNS),动物模型缺乏可重复性以及在获得人脑活检方面的困难。大脑器官系统的发展在模仿中枢神经系统的复杂性并克服所有这些缺点方面取得了突破。由各种神经元细胞类型组成的脑器官的细胞异质性,可以彼此连接和相互作用是一个很大的优势。获得患者样品,将其重新编程为干细胞的简单性,并将其用于神经退行性疾病建模,增强其翻译价值和更个性化的方法。IPSC衍生的人脑器官已用于研究脑感染(Qian等,2016),神经系统疾病和神经退行性疾病,例如阿尔茨海默氏病(Chen等,2021)。IPSC衍生的人脑器官已用于研究脑感染(Qian等,2016),神经系统疾病和神经退行性疾病,例如阿尔茨海默氏病(Chen等,2021)。
您是否知道您的肌肉会感到精疲力尽而不会真正筋疲力尽?事实证明,您的大脑在疲劳或身体疲劳方面与肌肉一样重要。您可以遇到“外围”疲劳,这是源自肌肉的疲劳,也可以体验到源自大脑和中枢神经系统的中心疲劳。通过研究大脑和肌肉,科学家可以检查导致您的疲劳的原因。但是如何?我们需要进行脑外科手术以获得答案吗?幸运的是,可以使用涉及刺激神经和肌肉的特殊技术!在本文中,我们说明了科学家如何确定锻炼后的疲倦是由中心疲劳引起的,还是两者兼有。我们还将探索两者之间的差异。
创伤性脑损伤(TBI),脊髓损伤(SCI)或中风后,中枢神经系统(CNS)功能障碍(CNS)的功能障碍仍然具有挑战性,无法使用现有药物和基于细胞的疗法来解决。尽管治疗细胞的给药,例如干细胞和神经祖细胞(NPC),在再生性质中表现出了希望,但它们未能提供实质性益处。然而,通过将这些细胞封装在细胞外基质(ECM)模拟水凝胶支架中而产生的生存皮质组织工程移植物的发展,在中风,SCI和TBI病例中为损坏的皮层提供了有希望的功能替代。这些移植物促进了中枢神经系统损伤后的神经网络修复和再生。鉴于天然糖胺聚糖(GAG)是中枢神经系统的主要组成部分,基于GAG的水凝胶具有下一代CNS愈合疗法和中枢神经系统疾病的体外建模的潜力。脑特异性插科打s不仅为封装的神经细胞提供结构和生化信号支持,而且还调节病变的脑组织中的炎症反应,从而促进宿主整合和再生。这篇综述简要讨论了插科打s及其相关蛋白聚糖在健康和疾病中的不同作用,并探讨了基于GAG的生物材料治疗中枢神经系统损伤和建模疾病的当前趋势和进步。此外,它还检查了可注射的,3D生物打印和基于导电的基于堵嘴的支架,从而强调了它们在体外特异性神经功能障碍的体外建模的临床潜力及其在VIVO中CNS损伤后增强CNS再生和修复的能力。
摘要:肽可以充当靶向分子,类似于寡核苷酸适体和抗体。它们在生理环境中的生产和稳定性方面特别有效;近年来,它们越来越多地被研究作为多种疾病的靶向剂,从肿瘤到中枢神经系统疾病,这也要归功于其中一些肽能够穿过血脑屏障。在这篇综述中,我们将描述用于它们的实验和计算机设计的技术,以及它们的可能应用。我们还将讨论它们的配方和化学改性方面的进步,这些进步使它们更加稳定和有效。最后,我们将讨论它们的使用如何有效地帮助克服各种生理问题并改善现有的治疗方法。