冰结构的关键在于,在某种条件下,氢键是否以可控的方式集体断裂,即一系列氢键沿一个方向断裂,例如沿图 1 所示的虚线。如果氢键从中心沿六个方向集体断裂,则预计冰将断裂成六块,每块与中心成 60 度角。从机械工程的角度来看,冰应该从任何一点开始具有各向异性。冰的这种机械特性尚未被研究过。在这篇简短的报告中,我们证明,薄冰在接触点受到冲击/撞击时确实会断裂。冰以预期的角度断裂成六块。这可能是第一个例子直接观察到氢键沿预期方向以可控的方式集体断裂。
由桑迪亚国家实验室发布,由桑迪亚国家技术与工程解决方案有限责任公司为美国能源部运营。注意:本报告是作为美国政府机构赞助的工作的记录而编写的。美国政府、其任何机构、其任何雇员、其任何承包商、分包商或其雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性作任何明示或暗示的保证,或承担任何法律责任或义务,或表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务,并不一定构成或暗示美国政府、其任何机构或其任何承包商或分包商对其的认可、推荐或支持。本文表达的观点和意见不一定表明或反映美国政府、其任何机构或其任何承包商的观点和意见。印刷于美国。本报告直接复制自最佳可用副本。能源部和能源部承包商可从以下地址获取:美国能源部科学技术信息办公室 PO Box 62 Oak Ridge, TN 37831 电话:(865) 576-8401 传真:(865) 576-5728 电子邮件:reports@osti.gov 在线订购:http://www.osti.gov/scitech 公众可从以下地址获取:美国商务部国家技术信息服务 5301 Shawnee Rd Alexandria, VA 22312 电话:(800) 553-6847 传真:(703) 605-6900 电子邮件:orders@ntis.gov 在线订购:https://classic.ntis.gov/help/order-methods/
摘要:共振辅助氢键 (RAHB) 是一种分子内接触,其特点是能量特别高。这一事实通常归因于系统中 π 电子的离域。在本文中,我们通过利用分子原子量子理论 (QTAIM) 和相互作用量子原子 (IQA) 分析,考察吸电子和给电子基团(即 − F 、 − Cl 、 − Br 、 − CF 3 、 − N(CH 3 ) 2 、 − OCH 3 、 − NHCOCH 3)对丙二醛中 RAHB 强度的影响,从而评估了这一论点。我们表明,所研究的取代基对所研究的 RAHB 强度的影响在很大程度上取决于其在 π 骨架中的位置。我们还研究了 RAHB 的形成能与波函数分析的 IQA 方法定义的氢键相互作用能之间的关系。我们证明了这些取代基对形成能和相互作用能有不同的影响,这使人们对使用不同参数作为 RAHB 形成能指标产生了怀疑。最后,我们还证明了能量密度如何能够以较低的计算成本估计这些重要相互作用的 IQA 相互作用能,从而估计 HB 强度。我们期望本文报告的结果将为评估 RAHB 和其他分子内相互作用的能量学提供有价值的理解。
摘要。电转气技术通过将电能转化为气体(例如氢气),可以将可再生能源产生的多余电力储存起来。然而,纯氢储存地点的可达性存在问题。因此,除了盐穴之外,还提出了将氢气与甲烷混合并使用地下矿井挖掘来增加储存容量的想法。然而,氢气具有很强的扩散能力,可以穿过不同的材料,包括钢和一些矿物。本文提出了在废弃地下矿井挖掘中储存氢气/甲烷混合物的概念。研究重点是混凝土作为储存气体屏障的渗透性。比较了两种方法的气体渗透性:脉冲衰减和稳态。所研究的混凝土和土聚物的气体渗透性取决于成分和压力条件,包括轴向应力。使用合成化合物可以显著提高混凝土的密封性。
对局部网络特征的分析表明,理想的电解器容量为300 kW,其中最高700 kW的容量是可行的。在[13]中列出了另一个例子,其中研究了风能系统的大小优化,以最大程度地提高氢价格和风能波动的股本回报率。结果表明,氢的生产仅为4.34欧元/千克氢气价格或更高,置信度92%。换句话说,增加电解器的大小将增加氢的产量,因此氢价格达到所需的可行性。在[14]中分析了通过水电解器生产氢的风能减少。检查了两个在5兆瓦以下及6兆瓦的电溶剂能力以下的网格连接的风氢系统的情况。结果表明,在两种情况下,随着电解器尺寸的增加,风能的利用率增加。但是,回报周期也增加了,而电解器的成本超过了氢价格的增加。一般而言,电解器尺寸的增加与电力消耗和氢的产生成正比,以实施适当的负载水平,否则可能会导致成本指数升高[15]。
这项研究提供了氢可以在海上能量过渡到净零排放未来的能量过渡中所扮演的作用的评估。已经确定了支持该地区与气候变化,包容性经济发展和能源可持续发展有关的广泛能源政策目标的机会。通过从生产,存储,分布到最终使用应用的全价链评估氢机会,并将其集成到端到端氢生态系统中。氢显示了成为2050能量混合物的重要组成部分的潜力,从而缩小了难以减轻的部门的差距。然而,该地区面临氢必须在近期内实现其潜在和关键政策和基础设施投资必须面临的挑战,以在该地区启动该地区的行动。
该项目是在与荷兰统计局合作(荷兰称为CBS)的TNO Energy Transition的能源过渡研究系进行的。该项目是由经济事务和气候政策部委托的,在荷兰企业局的财政支持下(荷兰称为RVO)。该项目的项目负责人和本文件的首席作者是Marcel Weeda。Reinoud Segers在CBS和本报告的共同作者中是对应的。该项目以TNO注册,标题为“ Waterstof in EnergiestAtiSieken”,项目编号为060.42292。作者要感谢DNV·GL和Gasunie提供了他们最近在荷兰氢供应库存的背景数据。这证明了这项研究非常有用的起点。此外,作者要感谢BertDaniëls(PBL),Robin van de Oever(CBS)和Carina Oliveira Machado Dos Santos(TNO)的宝贵讨论和贡献,以使数字正确,尤其是对于炼油厂的氢气。最后,作者要感谢Jaap Oldenziel(Air Liquide)的有用沟通,这有助于更好地了解可以区分的各种工业氢生产。
执行摘要:氢气和基于 H 2 的分散供热的作用 政策制定者、商界领袖和科学家认为,氢气是清洁能源转型成功的重要能源载体。最近的许多研究调查了氢气的应用领域,提出了广泛引入氢技术的各种路线图。近年来的能源政策辩论往往集中在如何使能源系统可持续,同时必须长期依赖太阳能和风能这两种主要的可再生能源。在这场讨论中,人们达成了广泛的共识,即只要技术上可行且方便,就应最大限度地直接使用电力。就建筑物供暖而言,现在很明显,热泵从环境中提取的热量是其消耗的电能的三倍,由于 PtG 的转换损耗大(能量经过多个步骤从电能转化为氢气,从氢气转化为甲烷,然后从甲烷转化为热能),因此比基于电转气 (PtG) 的合成燃料效率高得多 [3]。近年来进行的科学研究证实了热泵和 PtG 之间明显的效率差异。有关这一主题的最全面的研究题为“建筑行业效率:能源转型的关键组成部分”,由柏林智库 Agora Energiewende 发表 [4]。在这项研究中,我们评估了有关氢气供应、需求和基础设施的最新研究,并进行了我们自己的分析。在以下章节中,我们将介绍关于氢气在能源系统转型中的作用的研究结果,特别是在建筑领域。A. 氢气的一般作用:
尽管使用传统方法 5 或手性催化剂 6,7 或双催化 8 来实现非对映体不对称催化(DAC)的新策略仍备受关注。相反,虽然含氢键供体的双功能催化剂已经得到广泛应用,9 但是仅通过改变这种催化剂的氢键供体来控制非对映体选择性的方法还很少见。10 对于双功能叔胺催化,理论研究提出了三种工作模型,它们在催化剂的氢键供体与亲核试剂和亲电试剂的相互作用方式上有所不同(方案 1A)。11 – 15 离子对氢键模型(A 型)最初由 Wynberg 11 a 提出,并得到 Cucinotta 和 Gervasio 的理论研究支持。11 b 布朗斯台德酸-氢键模型(B 型)由 Houk 等人揭示。通过量子力学计算。12 A 型模型与 B 型模型的不同之处在于,催化剂的氢键供体分别用于激活亲电试剂和稳定亲核中间体,同时形成的烷基铵离子作为布朗斯台德酸分别与其余亲核试剂或亲电试剂相互作用。当涉及(硫)脲等双氢键供体时,反应可能通过 A 型模型的过渡态进行,其中两个 N – H 键都与亲电试剂相互作用,正如 Takemoto 通过实验研究 13 a 所建议并得到理论研究的支持,13 b – d 或通过模型 B,其中两个