扩散式卫星星座为导弹发射检测、低信噪比 (SNR) 红外搜索与跟踪 (IRST) 以及空间域感知提供了极具吸引力的解决方案。与将资产置于地球静止轨道 (GEO) 相比,低地球轨道/中地球轨道 (LEO/MEO) 的 Delta-V 较低,地面和大气分辨率以及可实现的 SNR 更高,并且技术更新可以更容易地完成。此外,分散式星座能够更好地吸收单个资产的损失,而不会遭受相应的系统能力损失,尤其是在采用平台网络和冗余时。部署多达数百颗卫星的星座的一个主要考虑因素是,与它们要取代的少数 GEO 资产相比,它们的实施必须在不大幅增加成本的情况下完成。此外,部署必须在短时间内(而不是几十年)完成才能实现运营效率,因此实现高制造率的能力至关重要。最后,虽然卫星平台、通信系统和处理的价格已经下降,但传统使用的红外传感器的价格却没有下降。
polintons/mavericks(以下称为polintons)被发现为双链DNA(dsDNA)转座子,它们编码B家族(PPOLB)(PPOLB)的自发性,蛋白质培养的DNA 2聚合酶(PPOLB)和逆转录病毒 - 元素(Int-Element-entempose(Int)(int-like Light)(polints)(polintons)(polintons)(polintons)(polintons)(horce)(horce)3个名称。到目前为止,主要在硅硅中鉴定和表征,Polinton是跨单细胞和多细胞真核生物广泛发现的4个较大的已知DNA转座子之一,范围从13-25千个酶对(KBP),具有100-1500碱基对(BP)碱基对(BP)终端倒流6(TIR)和5-8 bp tarts 1(tir)和5-8 bp dup dup dup dup dup dup dup duplic(tir)。除了PPOLB和INT外,Polintons 7通常还编码编码与病毒型形态发生的DsDNA病毒蛋白8的核心基因组合,例如腺病毒样成熟蛋白酶(Pro),基因组9包装ATPase,以及MAGID CAPSID蛋白,以及MCSID蛋白(MCPS和MCPS和MCPS)5-11。10 polinton通常占据其宿主基因组的一部分;然而,有基因组11的发生率要高得多,例如挖掘的阴道滴虫,波林顿12膨胀到占基因组3,12-18的30%以上。13
传感器灵活性 • 10 个传感器有效载荷 • 提供 6 种独立数字成像模式和 4 种离散激光功能 • 精密变焦低光和高清彩色光学元件,用于态势感知 • 长距离低光、高清彩色和短波红外 (SWIR) 观察镜光学元件,用于白天和夜晚的正面目标 ID • 激光照明器、双模测距仪/指示器和点跟踪器 • 多视场 640x512 中波红外,可选 1280x1024 高清中波红外
为了进行云检索,中波红外水蒸气通道用于推断低水平温度反转的存在,并在一定程度上推断云相(高云与低云,但通道没有固有的相位信息)
回复:案件编号 9619 关于马里兰州能源储存试点计划 尊敬的约翰斯顿部长: 根据委员会修改后的备案程序,随函附上上述事项中波托马克爱迪生公司参与能源储存试点计划的申请书。
• 地球观测应用 – 产量估计和变化检测 • 空间天气和空间安全 – 卫星和地面测量 • 地球物理学:地磁活动 – 保护关键基础设施的一步 • 磁离子介质中波传播的研究 • 人工智能应用 • 地理信息学 • 发明和测试航天器的新结构材料 • 天文学和地球物理学中使用的仪器的设计和开发
我们提出了一个新假设,将温度与量子系统中波函数坍缩的频率联系起来。该框架将热力学熵、量子退相干和信息论联系起来,表明温度升高对应于由于环境相互作用增强而导致的波函数坍缩增加。本文得出的数学模型为实验验证奠定了基础,并通过统一的视角将热力学与量子力学联系起来。
·进行了有关低地球轨道(LEO)资格和测试的文献,包括原位评估任务和模拟LEO环境。·开发了一种用于使用线性可变滤波器和红外摄像机对相位更改可调节滤波器进行自动实时表征的系统,用于广泛的中波红外红外成像·技能:MATLAB,C/C ++,C/C ++,电路,电路的拟合,科学撰写。·参考:Hyun Jung Kim,博士,hyunjung.kim@nasa.gov
需要一系列替代杂草控制方案来多样化和维持杂草管理计划,以及减轻/防止对杂草控制策略(化学和非化学)产生抗药性。初步评估和审查已确定一系列适合用作谷物生产系统中特定地点杂草控制处理的技术。这些技术包括激光、电动除草、水射流切割、定向能(蓝光 + 中波红外辐射)和行间割草。为了激发人们对这些技术的商业兴趣,需要明确确定澳大利亚谷物环境中的杂草控制能力。将进行技术特定研究和开发,以确定杂草控制效果、适当的交付时间以及在谷物生产系统中的适用性。
光谱中的中波红外 (MWIR) 部分对于各种军事和民用应用都具有重要意义,包括分子指纹化学传感和热检测。传统上,在使用 MWIR 激光照射目标的应用中,光束通过万向节进行机械控制。虽然机械万向节具有一些优点,包括效率高,但它们通常体积大、重量重、耗电量大、转换速率相对较慢,而且由于它们包含多个电机和运动部件,因此需要频繁维护。这些特性加在一起,使机械万向节不适合新兴应用,包括安装在小型无人驾驶车辆上,因为这些车辆的部件允许尺寸和重量受到限制。需要新技术来摆脱与机械转向相关的缺点。