放松复制起源和DNA解旋酶的负载是染色体复制的启动。在大肠杆菌中,最小起源oric包含一个双链放松元素(欠款)区域和结合起始蛋白DNAA的三个(左,中和右)区域。左/右区域带有一组DNAA结合序列,构成了左/右DNAA子复合物,而中间区域具有一个单个DNAA结合位点,该位点刺激了左/右DNAA亚复合物的锻炼。此外,群集元素(tattaaaaagaa)位于最小oric区域外。左DNAA子复合物促进了由于暴露TT [A/G] T(T)序列的放松,然后结合到左DNAA亚复合物,稳定DNAB Helicase载荷所需的未能状态。然而,右DNAA亚复合物的作用在很大程度上不清楚。在这里,我们表明,左/右DNAA子复合物的应有的放松,而不是仅由左DNAA子复合物,这是由应有的末端次区域刺激的。一致地,我们发现了右DNAA子复合物 - 绑定的单链应育成区域和群集区域。此外,左/右DNAA子复合物独立地结合了DNAB解旋酶。仅对于左DNAA子复合物,我们表明该群集对于DNAB加载至关重要。体内数据进一步支持了右DNAA子复合物的Unwound DNA结合的作用。综上所述,我们提出了一个模型,其中右DNAA子复杂与UNWOUND应变动态相互作用,有助于适当的放松和有效的DNAB解旋酶负载,而在没有Right-DNAA子复杂性的情况下,在这些过程中没有在这些过程中进行群集的辅助,以支持重复的鲁棒性。
如今,人们对电池储能系统 (BESS) 的了解迅速增长,并因此在电网中得到广泛应用。组装在集装箱中的公用事业规模电池可以在电网中运输。尽管具有众多好处,但这一特点却被忽视了。在以前的研究中,电池移动是基于特定的传输方法(例如卡车或火车)建模的。因此,通过改变电池的运输方法,应该重新建模问题,而且不可能通过结合两种传输方法来安排电池移动。在此背景下,本文提出了一种配电网中的新电池移动调度方法。为此,除了确定总线位置外,还将确定任何运行时间段的最佳充电或放电功率。在所提出的模型中,只有总线之间的距离很重要,而电池的传输方式并不重要。因此,可以使用一种传输方法(例如卡车)或两种方法(卡车和火车)的组合来执行电池传输。通过保持模型的线性结构,还可以计算电池的无功功率贡献、网络的功率损耗和总线电压。这保证了该公式在实际配电网中的实际应用。在测试系统上实施该模型的结果表明,移动式 BESS 相对于固定式装置具有明显的优势。
在萨里卫星技术有限公司,我们使用推进器来推动一些航天器在太空中移动。我们将一根管子装满气体,就像给气球充气一样,然后将其安装到卫星上。