超敏光谱是中红外(MIR)技术的重要组成部分。然而,miR探测器的缺点在单光子水平上对稳健的miR光谱构成了挑战。我们提出了miR单光子频率上转换光谱非局部将miR信息映射到时间do-main。来自自发参数下调的宽带miR光子频率向上转换为具有量子相关性保存的近红外带。通过纤维的组延迟,在1.18微米的带宽为2.76至3.94微米内的miR光谱信息被成功地投影到相关光子对的到达时间。在每秒6.4×10 6光子的条件下,使用单像素检测器证明了具有单光子敏感性的聚合物的传输光谱。开发方法绕过扫描和频率选择不稳定性,它在不断发展的环境中固有的兼容性和各种波长的可伸缩性而引人注目。由于其高灵敏度和鲁棒性,生化样品的表征和量子系统的弱测量值可能是预见的。
项目详细信息:动机:中红外(miR)光谱是一种强大的工具,可通过其独特的振动吸收特征(波长〜2-14 µm)来识别生化物质 - 在革命性技术中扮演至关重要的作用,使生物医学诊断,远程诊断和环境监视。不幸的是,miR光谱传感/成像被认为是繁琐的,昂贵的,通常是在实验室中固定的。对缩小传统光谱系统的技术挑战仍然存在 - 从光源,传感机制(由于相互作用弱)到检测子系统。metasurfaces为下一代多功能miR传感技术提供了令人兴奋的途径。元面是3D超材料的2D等效物:人工设计的材料,其特性在自然界中不可能找到。光子跨国使用子波结构(元原子)阵列内的纳米级光 - 含量相互作用来操纵电磁波。但是,光子学中的常规前向设计过程导致最终的设备功能和性能不足,没有明显的方法进行。AI驱动的逆设计方法提供了光子结构设计的新范式,以克服传统方法。项目:这个跨学科的博士学位项目将使用逆设计方法开发多功能光子跨度,用于非常规MIR光谱传感和高光谱成像技术。该博士学位的目标是开发了下一代mir技术的家族。C. Williams博士(PI),位于CMRI中,我们将调查(1)热发射微型源,这些微型源操纵热发射,超出了经典的各向同性,宽带和非偏振黑体发射; (2)增强与靶分子相关的分子振动吸收模式(包括葡萄糖,与工业伴侣结合); (3)用于超敏感传感的光驱动光热传感器。技能开发:研究跨越基本的光学物理学到应用程序,学生将在博士项目期间开发多样化且备受追捧的技能,包括:使用AI /机器学习方法,电磁模拟的计算光学器件(包括Lumerical FDTD和comsol),最先进的洁净室内的纳米制作(包括电子束光刻,物理蒸气沉积和两光子聚合3D打印),电形系统表征,感应性能的验证和高级数据分析。埃克塞特大学:埃克塞特物理学系在光学物理,光子设备开发和超材料方面具有广泛的专业知识。学生将拥有世界一流的研究设施,并基于超材料研究与创新中心(CMRI):一个学术,工业和政府合作伙伴的社区,可利用从理论到应用的世界领先的研究卓越研究,并启用模拟,测量和基于基于Metamagatials和Metamagematialial的设备。
模型组预测可变最大最大SDR²CV相对RMSECV RMSECV RPDCV模型质量牛奶C4(g/dl)0.01 0.23 0.10 0.10 0.03 0.03 0.93 8%3.67 3牛奶C6(g/dl)0.01 0.01 0.01 0.16 0.16 0.07 0.02 0.02 0.02 0.02 0.91 9%3.32 3牛奶C8牛奶C8牛奶C8牛奶C8(G/DL)0.011111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 2011得益3牛奶C10(g/dl)0.02 0.32 0.11 0.04 0.91 9%3.37 3牛奶C12(g/dl)0.02 0.41 0.13 0.13 0.04 0.92 9%3.62 3牛奶C14(g/dl)0.05 1.05 1.20 1.20 1.20 1.20 0.45 0.45 0.13 0.13 0.13 0.15 0%0.0%0.0%0.6牛奶C14_1(dl)0.00 004 dl) 21% 1.78 5 Milk C16 (g/dL) 0.12 3.32 1.20 0.40 0.94 8% 4.18 3 Milk C16_1c (g/dL) 0.01 0.24 0.07 0.03 0.73 20% 1.91 5 Milk C17 (g/dL) 0.00 0.09 0.03 0.01 0.80 13% 2.24 4 Milk C18 (g/dL) 0.05 1.32 0.40 0.15 0.84 14% 2.51 4 Milk C18_1cis9 (g/dL) 0.08 2.69 0.76 0.29 0.95 8% 4.35 2 Milk C18_2c9c12 (g/dL) 0.00 0.17 0.06 0.02 0.72 19% 1.91 5 Milk C18_2c9t11 (g/dL) 0.00 0.14 0.03 0.02 0.74 37% 1.95 6 Milk C18_3c9c12c15 (g/dL) 0.00 0.09 0.02 0.01 0.68 22% 1.77 5 Milk Tot18_1cis (g/dL) 0.09 2.77 0.82 0.31 0.95 8% 4.58 2 Milk Tot18_2 (g/dL) 0.01 0.32 0.10 0.03 0.69 15% 1.79 5 Milk Total_C18_1 (g/dL) 0.10 2.98 0.94 0.33 0.96 7% 5.18 2 Tot18_1trans (g/dL) 0.01 0.57 0.13 0.06 0.79 21% 2.17 4 Milk Total_Trans (g/dL) 0.02 0.75 0.16 0.08 0.80 19% 2.26 4 Milk isoanteiso FA (g/dL) 0.02 0.28 0.09 0.03 0.75 14% 2.00 5 Milk Odd fatty acids (g/dL) 0.03 0.50 0.16 0.04 0.83 10% 2.41 4 Milk omega3 (g/dL) 0.00 0.11 0.03 0.01 0.66 22% 1.73 5 Milk omega6 (g/dL) 0.01 0.33 0.10 0.03 0.72 14% 1.89 5 Milk SAT FA(g/dl)0.31 6.97 2.70 0.75 0.99 3%10.22 1牛奶unsat(g/dl)0.14 3.86 3.86 1.25 0.39 0.97 5%5.75 2牛奶单fa(g/dl)(g/dl)0.12 0.12 3.42 3.42 3.42 1.08 0.35 0.35 0.35 0.30 0.77 77 13.77 13.02牛奶pufa(g/dl)dl) 2.10 4牛奶SCFA(g/dl)0.05 0.80 0.35 0.10 0.93 7%3.88 3牛奶LCFA(g/dl)0.19 4.79 4.79 1.59 0.52 0.52 0.95 7%4.52 2牛奶MCFA(G/DL)
Corinna Kloss 1,* , Vicheith Tan 1 , J. Brian Leen 2 , Garrett L. Madsen 2 , Aaron Gardner 2 , 徐杜 2 , Thomas Kulessa 3 , Johannes Schillings 3 , Herbert Schneider 3 , Stefanie Schrade 1 , 晨曦邱 1 , 马克·冯·霍布 1
摘要。我们介绍了一种机载中红外腔增强吸收光谱仪 (AMICA),它使用离轴积分腔输出光谱 (OA-ICOS) 在研究飞机上现场测量痕量气体。AM-ICA 包含两个很大程度上独立且可互换的 OA- ICOS 装置,允许同时测量不同红外波长窗口内的多种物质,以满足与特定飞行任务相关的科学问题。已经实施了三种 OA-ICOS 设置,目的是测量 2050 cm − 1 处的 OCS、CO 2 、CO 和 H 2 O;1034 cm − 1 处的 O 3 、NH 3 和 CO 2;以及 3331 cm − 1 处的 HCN、C 2 H 2 和 N 2 O。 2050 cm − 1 装置已在实验室中进行了表征,并在两次使用 M55 Geophysica 研究飞机和一次使用德国 HALO(高空远程研究飞机)的活动中成功用于大气测量。对于 OCS 和 CO,在典型的大气混合比下,已生成准确度为 5%(对于低于 60 ppb 的 CO,准确度为 15%,因为标准稀释会引入额外的不确定性)的科学数据,实验室测得的 1 σ 精度为 30 ppt(对于 OCS)和 3 ppb(对于 CO,时间分辨率为 0.5 Hz)。对于 CO 2,在大气混合比下的高吸收会导致饱和效应,从而限制灵敏度并使光谱分析复杂化,导致不确定性过大,无法用于科学用途。对于 H 2 O,吸收太弱而无法测量
©2022 Taylor&Francis Group,LLC。保留所有权利。本文只能下载供个人使用。任何其他用途都需要事先获得版权持有人的许可。记录的版本可在线在http://doi.org/10.1080/05704928.2022.2156527获得。
基于GE的集成光子回路过去10年中,基于锗(Ge)的光电元件得到了发展,拓展了硅(Si)光子回路的潜力。光电探测器、调制器和Ge-on-Si激光器已经在中红外区得到演示。Ge的主要优势在于它的透明窗口大,波长范围从1.8至14μm,并且与CMOS兼容。Ge和SiGe合金很快被视为开发集成光子元件的首选材料。厚Ge和SiGe层(高达40%的Ge)通常在工业外延集群工具中通过化学气相沉积在200mm和300mm Si(001)晶片上生长。关于Ge和SiGe生长的更多细节可以在参考文献[1]中找到。 SiGe 或绝缘体上的 Ge(如 SiN)晶片可从之前的外延中制造出来。在这种情况下,需要将两个晶片键合在一起:第一个晶片具有 Ge 或 SiGe 外延层,上面覆盖有 SiNx 层和薄 SiO 2 层,第二个晶片是氧化 Si 晶片。在 SiO 2 到 SiO 2 键合之后,起始
摘要。中红外检测器阵列从2.8到20μm,在Origins空间望远镜的中红外光谱仪仪器的设计中基本。该仪器旨在检测和测量外部宿主星的气体中生物起源气体气体的光谱特征。为了进行这些检测,当检测器阵列的像素的像素在几个小时的典型传输时间内暴露于多个时间序列积分中的恒定通量时,需要具有高信号稳定性。通过使用致密的瞳孔光谱仪设计,可以缓解指向效应,因为指向变化不会在检测器上删除光谱,并且在大量像素上平均每个光的光长度平均,从而提供了良好的分光光度计稳定性。当前的最新检测器阵列无法实现这些稳定性,尽管有了可行的开发计划,应该可以实现这种级别的调整。正在考虑此开发的三种检测器技术,即HGCDTE阵列,SI:作为杂质带传导阵列和过渡边缘超级导体重测阵列。我们主要处理HGCDTE技术开发,但也引入了其他两种技术的前进道路。经过几年的调查计划,将进行下调以选择飞行技术。©作者。由SPIE发表在创意共享归因4.0未体育许可下。全部或部分分发或重新分配或重新分配本工作,需要完全归因于原始出版物,包括其DOI。[doi:10.1117/1 Jatis.6.4.041503]
摘要。中红外检测器阵列从2.8到20μm,在Origins空间望远镜的中红外光谱仪仪器的设计中基本。该仪器旨在检测和测量外部宿主星的气体中生物起源气体气体的光谱特征。为了进行这些检测,当检测器阵列的像素的像素在几个小时的典型传输时间内暴露于多个时间序列积分中的恒定通量时,需要具有高信号稳定性。通过使用致密的瞳孔光谱仪设计,可以缓解指向效应,因为指向变化不会在检测器上删除光谱,并且在大量像素上平均每个光的光长度平均,从而提供了良好的分光光度计稳定性。当前的最新检测器阵列无法实现这些稳定性,尽管有了可行的开发计划,应该可以实现这种级别的调整。正在考虑此开发的三种检测器技术,HGCDTE阵列,SI:作为杂质带传导阵列和过渡边缘超级导体重测阵列。我们主要处理HGCDTE技术开发,但也引入了其他两种技术的前进道路。经过几年的调查计划,将进行下调以选择飞行技术。©作者。由SPIE发表在创意共享归因4.0未体育许可下。全部或部分分发或重新分配或重新分配本工作,需要完全归因于原始出版物,包括其DOI。[doi:10.1117/1 Jatis.6.4.041503]