摘要。我们报告了调整詹姆斯·韦伯太空望远镜(JWST)设计的调查,满足了Origins太空望远镜的需求和要求。引入并详细介绍了JWST设计的设备和JWST设计的绝缘材料所需的修改和隔热。Webb热模型被修改为原始设计,并用于预测18和4.5 K的热载荷。我们还描述了JWST中红外仪器的冷冻仪所需的开发,以达到原始温度所需的温度。讨论了各种修改的冷冻机的功能。我们表明需要三个修改的冷却器来实现起源所需的性能。最后,我们证明可以在韦伯体系结构中容纳基线仪器和所需的冷却器以获得数量,质量和功率。©作者。由SPIE发表在创意共享归因4.0未体育许可下。全部或部分分发或复制此工作需要完全归因于原始出版物,包括其DOI。[doi:10.1117/1.jatis.7.1 .011006]
每个分析仪的特征表1显示了每种仪器的外观和特征。FTIR仪器用中红外光照射样品,并检测到进行定性和定量分析的光吸收程度。可以进行非破坏性测量,因此在FTIR测量后,可以使用另一种仪器再次分析样品。FTIR+ATR可以测量的MPS的大小为几百μm或更多。可以使用几个10秒的测量值对单个塑料进行分析。使用塑料分析仪,一个塑料分析系统,其中包括紫外线受损和受损的塑料库,即使是那些不熟悉分析的塑料库,也可以轻松地测量和分析在环境中降级的MP。py-GC-MS是一种瞬间热分解样品的仪器,通过柱子上的组件将蒸发的热解产物分离,并通过MS检测到它们。可以通过检测特定于每种塑料的热分解产品来进行定性和定量分析。由于测得的样品被热分解,因此无法对其进行分析。
HCI、CIONOv HF 和 HNO3 的垂直柱量已从以下地点的 FTIR 测量处理中得出:斯匹次卑尔根岛新奥尔松 (79°N, 120 E);瑞典基律纳 (67°N, 210 E);挪威哈雷斯塔 (600N, 110 E);英国伦敦 (51°N 00 E)!和瑞士少女峰 (47°N 80 E),其中一些地点还提供了其他平流层痕量气体(包括 03 和 CIO)的测量数据。所有这些地点都配备了高分辨率 Broker 120HR 或 120M 傅里叶变换光谱仪,使用太阳作为光源记录中红外大气光谱。有关光谱仪配置和分析细节的更多详细信息,可参见其他出版物 [Bell et aI, 1997; Galle et aI, 1996; Blumenstock et aI, 1997; Notholt et aI, 1997; Zander et aI, 1993]。Paton-Walsh et aI, 1997 报告了这些测量中固有的不确定性水平的估计值。
硅在半导体技术中的蓬勃发展与控制其晶格缺陷密度的能力密切相关 [1]。在 20 世纪上半叶,点缺陷被视为对晶体质量的危害 [2],如今它已成为调节这种半导体电学性质的重要工具,从而推动了硅工业的蓬勃发展 [1]。进入 21 世纪,硅制造和注入工艺的进步引发了根本性变革,使人们能够在单个层面上控制这些缺陷 [3]。这种范式转变将硅带入了量子时代,如今单个掺杂剂被用作可靠的量子比特来编码和处理量子信息 [4]。这些单个量子比特可以通过全电方式有效控制和检测 [4],但其缺点是要么与光耦合较弱 [5],要么发射中红外波段的辐射 [6],不适合光纤传播。为了分离具有光学接口的物质量子比特,从而实现量子信息的长距离交换,同时又能从先进的硅集成光子学中获益 [7],一种策略是研究在近红外电信波段具有光学活性的硅缺陷 [8, 9]。
在以下地点通过 FTIR 测量处理获得了 HCI、ClON、HF 和 HNO3 的垂直柱量:斯匹次卑尔根岛的新奥尔松(79°N,120 E);瑞典基律纳(67°N,210 E);挪威哈雷斯塔(600N,110 E);英国伦敦(51°N 00 E)和瑞士少女峰(47°N 80 E),其中一些地点还测量了其他平流层痕量气体,包括 O3 和 CIO。所有这些地点都配备了高分辨率 Broker 120HR 或 120M 傅里叶变换光谱仪,使用太阳作为光源记录中红外大气光谱。有关光谱仪配置的更多细节和分析细节可在其他出版物中找到 [Bell et al, 1997; Galle 等人,1996 年;Blumenstock 等人,1997 年;Notholt 等人,1997 年;Zander 等人,1993 年]。Paton-Walsh 等人(1997 年)报告了这些测量中固有的不确定性水平的估计。
o 欧空局提供了阿丽亚娜运载火箭和一些科学仪器、近红外光谱仪和中红外仪器,以及太空望远镜科学研究所的运营人员。 o 加拿大航天局提供了精细制导传感器,使韦伯望远镜能够精确指向,从而获得高质量的图像,还提供了近红外成像仪和无缝隙光谱仪,以及太空望远镜科学研究所的运营人员。 o 诺斯罗普·格鲁曼航空航天系统公司 (NGAS) 是 NASA 的主要工业承包商,负责建造光学望远镜、航天器平台和遮阳板,并为天文台的发射做准备。NGAS 领导了一个包括三个主要分包商的团队:Ball Aerospace、Orbital-ATK 和 Harris(前身为 ITT Exelis)。 o 任务及其科学计划的运营由太空望远镜科学研究所根据与 AURA, Inc. 签订的合同进行。 利益相关者/国会磋商 o 定期向管理和预算办公室 (OMB) 汇报最新情况
片上纳米量波导传感器是一种有前途的解决方案,用于使用中红外(miR)区域中的吸收菌印刷物进行微型化和无标记的气体混合物检测。然而,由于吸收光谱的重叠,有机气体混合物的定量检测和分析仍然具有挑战性,报道较少。在这里,将人工智能(AI)辅助波导“光子鼻”作为MIR中的气体混合物分析的增强传感平台提出。凭借支持的波导设计和机器学习算法的帮助,将二元有机气体混合物的miR吸收光谱与任意混合率区分开,并分解为单组分光谱以进行浓度预测。结果,实现了19个混合比的93.57%的分类。此外,气体混合物频谱分解和浓度预测显示,平均根平方误差为2.44 vol%。这项工作证明了MiR波导平台的更广泛的感测和分析能力的潜力,用于多个有机气体成分,用于MIR片段光谱。
摘要:具有高相干性的热排放,尽管不如激光的热排放,但在许多实际应用中仍然起着至关重要的作用。在这项工作中,通过利用几何扰动诱导的光学晶格三倍和相关的光辉区折叠效果,我们提出并研究中红外的热排放,并同时具有高时空和空间连贯性。与我们先前工作中的倍增扰动的情况相反,引导模式分散带的陡峭部分将折叠到三元格式中的高对称性γ点。在这种情况下,特定的发射波长仅对应于非常小的波形范围。因此,除了以30 nm左右的实验带宽为特征的高时间相干性外,所达到的热排放还具有超高的空间相干性。计算表明,在中红外的热发射波长下,空间相干长度很容易达到MM尺度。关键字:三元光栅,光彩区折,准引导模式,中红外,连贯的热发射器
我们证明,可以设计中红外跨带过渡的吸收饱和,以10-20 kW cm 2的中等光强度和室温下。该结构由一系列具有明智设计的253 nm厚的GAAS/ALGAAS半导体异质结构的金属 - 气管导体 - 金属金属斑块组成。在低入射强度下,结构在强光 - 耦合方面起作用,并在接近8.9 L m的波长下表现出两个吸收峰。饱和作为向弱耦合方案的过渡,因此,在增加入射强度时向单峰吸收。与耦合模式理论模型进行比较解释了数据,并允许推断相关的系统参数。当泵激光器在空腔频率上调谐时,随着入射强度的增加,反射率会降低。相反,当激光器以极化频率调谐时,反射性非线性会随着入射强度的增加而增加。在这些波长下,系统模仿了MID-IR范围内可饱和吸收镜的行为,这是当前缺失的技术。
在RESTSTRAHLEN区域,横向和纵向声子频率之间,极性介电材料对光线响应,而所得的强光 - 分子相互作用会导致形成称为表面声子极化子的混合型准颗粒。最近的工作表明,当光学系统包含纳米级极元素时,这些激发可以作为晶格的材料分散剂的结果,从而获得纵向场成分,从而导致形成了被称为纵向横向极化子的次级准粒子。在这项工作中,我们建立在以前的宏观电磁理论的基础上,开发了完整的纵向透明偏振子的第二次量化理论。从光 - 一种系统的哈密顿量开始,我们将失真对待晶格,引入弹性自由能。然后,我们将哈密顿量对角线化,表明偏振子的运动方程相当于宏观电磁作用,并量化了非局部运算符。最后,我们演示了如何根据极化状态重建电磁场并探索北极星诱导的Purcell因子的增强。这些结果证明了非局部性如何狭窄,增强和频谱调整近场发射,并在中红外传感中应用。