量子计算有望基于量子力学原理进行计算,由于有可能解决许多传统计算机无法解决的实际问题,量子计算最近受到越来越多的关注 [1,2]。目前,有许多不同的物理平台被认为是实现量子计算的潜在候选平台。可以说,光子学是唯一可以扩展到一百万个物理量子比特的平台。然而,光子学也是这些平台中最具挑战性的——因为光子通常不会相互作用,而在单光子水平上实现双量子比特门非常困难 [3]。为了解决这个问题,有人提出了一种不同的计算模型,即基于测量的量子计算 [4–6],它绕过了对量子门的需求。它只使用局部测量而不是幺正操作,但需要一个大规模高度纠缠的初始状态——簇状态。然后通过连续的自适应测量执行计算,这些测量将初始逻辑状态沿簇传送并有效地对其应用所需的幺正操作。物理上,这相当于将团簇态发射到光子电路中,让纠缠光子在电路中线性传播,在电路输出端口进行巧合检测,随后重新配置电路的结构[7]。
摘要 目的 评估中低收入国家 (LMIC) 创伤性脑损伤 (TBI) 患者的入院脑部计算机断层扫描 (CT) 扫描结果以预测长期神经系统结果。材料与方法 对 2017 年 3 月至 2018 年 4 月期间入住三级急诊医院的遭受 TBI 并在创伤后 12 小时内接受脑部 CT 扫描的患者进行前瞻性评估。所有住院至少 24 小时的患者在 12 个月后通过电话联系以评估他们的神经系统状况。结果 我们对 180 名患者进行了 12 个月的随访,其中大多数为男性 (93.33%)。 CT 发现的脑部变化,例如脑挫伤(BC;p = 0.545)、硬膜外出血(EDH;p = 0.968)和颅底骨折(SBF;p = 0.112)与较差的神经系统结果无关;然而,硬膜下出血(SDH;p = 0.041)、蛛网膜下腔出血(SAH;p 0.001)、脑肿胀(BS;p 0.001)、皮质沟消失(ECS;p = 0.006)、脑基底池消失(EBC;p 0.001)、凹陷性颅骨骨折(DSF;p = 0.017)和脑中线移位 > 5 毫米(p = 0.028)与较差的结果相关。
摘要:牲畜识别是一种必须采取的记录形式,以提供有关单个牲畜的信息。这项研究旨在确定男性巴厘牛在Dompu Regency中的定性和定量特征。使用统计数据,使用平均值,标准偏差和变异系数进行数据分析。使用1-36个月的一百二十雄巴厘牛作为样品。结果表明,每种特征的频率为47.5%的浅棕色皮草颜色,深棕色32.5%和黑色20%。鳗鱼线为40%厚线,15%中线,25%的细线和20%没有EEL线。MetaTarsal的颜色为87.5%,白色,边界牢固,白色为12.5%,边界模糊。臀部的颜色为82.5%,有牢固的边界,白色为17.5%,边界不明显。尾羽色为37.5%的黑棕色,棕色32.5%和黑色30%。此外,体长的定量特性获得的测量结果为113.8±10.0,变异系数为8.8%。胸围为147.2±11.8,变异系数为8.0%。背部高度为112.0±7.9,变异系数为7.1%。髋关节高度为115.8±8.4,变异系数为7.2%。体重为287.6±40.1,变异系数为14.0%。研究结果表明,在定性和定量上,dompu摄取的雄性巴厘牛特征相对异质。关键词:雄性巴厘岛牛,定性特征,定量特征。简介
多光谱 Landsat 7 ETM+ 分析为传统测绘提供了先前的研究。为地质测绘提供了宝贵的帮助。卫星收集的遥感图像 地质和地理状况:研究区域位于北纬 33°30 和 34° 之间,通过全景图显示,它们位于北纬 4°30 和南经 5°。东北部恢复了中阿特拉斯高原作为数字线性延伸的存在和重要性,主要包括景观中的地质不连续性、下侏罗纪白云质石灰岩的“线性”英语和线性“排列”(下和中莱阿斯),克服了法语系列 [1]。由三叠纪红色页岩和玄武岩组成 [4-7]。这些线纹与结构相关,其特征是板状结构,更多断层和元素,如断层、裂缝、褶皱轴和褶皱,呈单调的地貌。这是一个大型的喀斯特高原岩性接触。它们导致地形不同阶段,俯瞰 Sais 平原,在海拔 1000 米以上的洼地、排水和植被异常 [2]。 它被 NE-SW 断层和 [3] 穿过。然而,在几乎所有情况下,Tizi n'Tratten 的提取和分离,卫星图像将这些结构与 Atlas Pleated 的东南部中线纹分离,由北中阿特拉西断层 (ANMA) 表示。水平非常高 [1]。北部和西北部的界限由里夫南部的第三纪和第四纪覆盖层以及有趣的技术线纹和走廊决定(图1)。
脊髓刺激(SCS)是一种现有的临床神经技术,用于通过沿着硬膜外空间中线植入的电极刺激脊髓的背侧柱来治疗慢性疼痛[10]。最近,我们证明,通过植入SC在腰椎硬膜外空间侧面引导,我们可以在降低截肢截肢的人缺失的肢体中引起感觉[9]。SC在脊髓的横向上传递的 SC会激发从本体受体(即原发性和次级肌肉纺锤体和高尔基肌腱传统)和机械感受器(即Aβ皮肤传入)的轴突[11]。 通过刺激这些传入的纤维,SCS参与脊柱反射途径,引起肌肉反应,称为后根肌肉(PRM)反射,可以使用肌电图(EMG)记录[12-14]。 PRM反射是由本体感受性和皮肤传入纤维的多段激活引起的复合反射反应,这些传入纤维在脊柱运动神经元和中间神经元上突触[13,15,16]。SC会激发从本体受体(即原发性和次级肌肉纺锤体和高尔基肌腱传统)和机械感受器(即Aβ皮肤传入)的轴突[11]。通过刺激这些传入的纤维,SCS参与脊柱反射途径,引起肌肉反应,称为后根肌肉(PRM)反射,可以使用肌电图(EMG)记录[12-14]。PRM反射是由本体感受性和皮肤传入纤维的多段激活引起的复合反射反应,这些传入纤维在脊柱运动神经元和中间神经元上突触[13,15,16]。
原发灶不明的癌症 (CUP) 是指一组异质性肿瘤,最初表现为转移,通过适当的标准化诊断无法确定恶性肿瘤的原始部位 1,2。它占癌症诊断的 2-9%,是第八大最常见的癌症诊断,最常发生在 60 至 75 岁之间 2-4。对 12 项尸检研究中的 884 名 CUP 患者进行的回顾报告称,最常见的潜在隐匿性原发性肿瘤来自肺癌、胰腺癌和肝胆管系统 5。在肿瘤对化学疗法更敏感的病例中,只有 15-20% 的病例预后良好;低分化中线癌、女性腹膜乳头状腺癌、仅累及腋窝淋巴结的转移性腺癌、颈部淋巴结转移性鳞状细胞癌、单淋巴结转移、低分化神经内分泌癌、可切除肿瘤和生殖细胞肿瘤 6, 7 预后良好。其余患者的预后不良,中位生存期仅为 4 个月左右。后者这一较大的群体包括大多数表现为体能状态受损或血清 LDH 水平升高的患者 6, 7 。对这些预后不良的患者进行积极治疗通常弊大于利。因此,对患者的初步临床评估应仅针对确定疾病的程度和肿瘤亚型,其中特定的治疗方法可以改善患者的症状和预后。
摘要:为了提高生产率或预防事故,人们迫切需要一种技术来估计人类在某些活动期间的心理负荷。大多数研究都集中于单一的生理感知方式,并使用单变量方法来分析多通道脑电图 (EEG) 数据。本文提出了一个新框架,该框架依赖于混合脑电图 - 功能性近红外光谱 (EEG-fNIRS) 的特征,并由机器学习特征支持,以处理多级心理负荷分类。此外,我们建议在三个频段的时间和频域中使用双变量功能性大脑连接 (FBC) 特征,而不是常用的用于脑电图记录的单变量功率谱密度 (PSD):delta (0.5-4 Hz)、theta (4-7 Hz) 和 alpha (8-15 Hz)。借助 fNIRS 氧合血红蛋白和脱氧血红蛋白 (HbO 和 HbR) 指标,FBC 技术显著提高了分类性能,使用公共数据集对 0-back 与 2-back 的准确率为 77%,对 0-back 与 3-back 的准确率为 83%。此外,地形和热图可视化表明,EEG 和 fNIRS 的区分区域在 0-back、2-back 和 3-back 测试结果之间存在差异。确定 EEG 和 fNIRS 区分心理工作量的最佳区域是不同的。具体而言,后区在 alpha 波段的后中线枕叶 (POz) EEG 中表现最佳,而 fNIRS 在右额叶区域 (AF8) 中具有优势。
摘要 - 绘制的Sparsifation是大量算法的基础,范围从剪切问题的近似算法到图形Laplacian中线性系统的求解器。以最强的形式“光谱尖峰”将边缘的数量减少到节点数量的接近线性,同时近似保留了图形的切割和光谱结构。Benczúr和Karger(Stoc'96)的突破性工作以及Spielman和Teng(Stoc'04)表明,在原始图的边缘数量中,Sparsifitation可以在接近线性的时间内最佳地完成Sparsifation。在这项工作中,我们证明了用于光谱尖峰及其许多应用的多项式量子加速。特别是,我们给出了一种量子算法,在给定带有n个节点和m边缘的加权图中,在sublinear时间e O(√mn/ϵ)中输出了对spectral sparsifier的经典描述。我们证明这对小数因素很紧张。The algorithm builds on a string of existing results, most notably sparsification algorithms by Spielman and Srivastava (STOC'08) and Koutis and Xu (TOPC'16), a spanner construction by Thorup and Zwick (STOC'01), a single-source shortest paths quantum algorithm by Dürr et al.(ICALP'04)和Christiani,Pagh和Thorup(Stoc'15)的有效的K-K-wise独立哈希结构。我们的算法意味着用于求解拉普拉斯系统的量子加速,并近似于一系列切割问题,例如切割和最稀少的切割。索引项 - Quantum Computing;量子算法;图理论
背景和目的:静息状态下的大脑活动可能与执行任务的能力有关;然而,涉及静息状态下功能性磁共振成像 (fMRI) 和事件相关电位 (ERP) 的多模态方法尚未广泛用于研究成瘾性疾病。方法:我们探索了 26 名患有网络游戏障碍 (IGD) 的患者和 27 名年龄和智商匹配的健康对照者 (HC) 的静息状态下 fMRI 和听觉异常 ERP 值。为了评估静息状态下 fMRI 的特征,我们计算了区域同质性 (ReHo)、低频波动幅度 (ALFF) 和低频波动幅度分数 (fALFF);我们还计算了 ERP 的 P3 成分。结果:与HC相比,IGD个体在听觉ERP任务中表现出左侧枕下回的ReHo和fALFF值显著降低,右侧楔前叶的ReHo和ALFF值升高,左侧额上回的ALFF升高,以及中线中央顶叶区域的P3波幅降低。此外,IGD患者右侧颞下回和枕叶区域的静息态fMRI区域活动与P3波幅呈正相关,而左侧海马和右侧杏仁核的ReHo值与P3呈负相关。讨论与结论:我们的研究结果表明IGD患者难以与认知功能和感觉处理进行有效的互动,尽管其解释需要谨慎。本研究的结果将拓宽对IGD病理生理学背后神经生物学机制的整体理解。
弥漫性中线神经胶质瘤(DMG),迄今被称为弥漫性内在蓬托胶质瘤(DIPG),是一种罕见且具有侵略性的脑癌形式,主要影响儿童。尽管尚不清楚DMG/DIPG的确切原因,但在编码His-Tone H3蛋白的基因中,DMG/DIPG肿瘤的很大一部分含有突变,特别是H3K27M突变。该突变降低了H3K27ME3的水平,H3K27ME3是一种组蛋白修饰,在通过表观遗传调节调节基因表达中起着至关重要的作用。突变还改变了Polycomb抑制复合物2(PRC2)的功能,从而防止了与癌症发展相关的基因的抑制。由组蛋白H3突变引起的H3K27ME3的降低伴随着H3K27AC的水平增加,H3K27AC的水平是与主动转录有关的翻译后修饰。失调明显影响基因表达,从而通过促进不受控制的细胞增殖,肿瘤生长和代谢来促进癌症的发展和进展。DMG/DIPG改变蛋氨酸和三羧酸周期的代谢,以及葡萄糖和谷氨酰胺摄取。已经对表观遗传和代谢变化在DMG/DIPG发育中的作用进行了广泛的研究,并且了解这些变化对于开发针对这些途径的疗法至关重要。目前正在进行研究以确定DMG/DIPG的新治疗靶标,这可能导致这种毁灭性疾病的有效治疗发展。