简介 空间通信是涉及使用一个或多个空间站或使用一个或多个反射卫星或其他太空物体的任何无线电通信。卫星基本上是围绕另一个太空物体运行的物体。卫星通信是不同行业传统上用于解决提供各种服务中的通信问题的媒介之一。这些人造卫星充当太空中的中继站,用于传输语音、视频和数据通信。与地面通信系统不同,卫星确实具有无处不在的通信和收集数据的优势。因此,它们被政府、学术界、商业组织和其他组织用于各种方面或应用,包括但不限于:
美国之音 (VOA) 位于中美洲、南美洲和中太平洋地区的听众现在正在收听位于加利福尼亚州德拉诺的 Jack R. Poppele 发射站发射的节目。该发射站曾被称为德拉诺中继站,上个月以 Jack R. Poppele 的名字重新命名,他在 20 世纪 50 年代曾担任两届美国之音台长。Poppele 的职业生涯始于船上的无线电操作员。后来,他开发了定向信号,参与了第一个跨大西洋广播和第一个便携式广播工作室。他还为 AM 广播引入了立体声。该发射站位于加利福尼亚州圣华金谷。它是美国之音 14 个全球广播设施之一。该站的三台 250,000W 自动调谐 Collins 发射机和四台 250,000W Brown Boveri 发射机用于常规 AM 短波广播。此外,两台 50,000W 大陆电子独立边带发射机专门用于将美国之音节目转播到其他海外中继站。发射机可以通过全矩阵天线切换系统连接到 12 个幕式或五个菱形发射天线中的任何一个。这些天线能够将美国之音的信号传送到拉丁美洲、太平洋和远东地区。为了完成其使命,Jack R. Poppele 发射站每天用英语、西班牙语和克里奥尔语广播大约 10.5 个发射小时的美国之音节目。节目通过卫星互联系统 (SIS) 从华盛顿特区分发到电台。广播公司要求 FCC 彻底改革 FM 广播
量子中继器为长距离量子通信和量子互联网铺平了道路,量子中继器的概念基于纠缠交换,这需要实现受控量子门。频繁测量量子系统会影响其动态,这被称为量子芝诺效应 (QZE)。除了减缓其演化之外,QZE 还可用于通过在测量之间引入一组精心设计的操作来控制量子系统的动态。在这里,我们提出了一种基于 QZE 的纠缠交换协议,该协议几乎实现了单位保真度。我们的协议的实施只需要简单的频繁阈值测量和单粒子旋转。我们将提出的纠缠交换协议扩展到一系列中继站,以构建量子芝诺中继器,无论中继器的数量如何,这些中继器也几乎实现了单位保真度。我们的提议不需要受控门,从而降低了量子中继器的量子电路复杂性。我们的工作有可能通过量子芝诺效应为长距离量子通信和量子计算做出贡献。
随着各个科学领域的技术突破,不同国家的科学家构想出了各种太空通信理念。俄罗斯科学家康斯坦丁·齐奥尔科夫斯基 (1857-1935) 是第一个将太空旅行作为一门科学进行研究的人,并于 1879 年提出了火箭方程,该方程至今仍用于现代火箭的设计。他还首次对人造卫星进行了理论描述,并指出了地球同步轨道的存在。但他没有发现地球同步轨道的任何实际应用。著名的德国科学家和火箭专家赫尔曼·奥伯特于 1923 年提出,轨道火箭的机组人员可以通过镜子发送信号与地球上的偏远地区进行通信。1928 年,奥地利科学家赫尔曼·诺登认为地球静止轨道可能是载人航天器的理想位置。1937 年,俄罗斯科学家提出,电视图像可以通过从航天器上反射来中继。 1942-1943 年间,乔治·O·史密斯在《惊人的科幻小说》中发表了一系列文章,其中介绍了一颗人造行星——金星等边行星,当太阳阻挡直接通信时,它充当金星和地球站之间的中继站。然而,电子工程师和著名科幻小说作家亚瑟·C·克拉克通常被认为是现代卫星通信概念的创始人。
菲尼克斯-古德伊尔机场 (GYR) 是菲尼克斯都会区的一个通用航空机场,位于菲尼克斯市中心西南 17 英里处。机场有一条长 8,500 英尺、宽 150 英尺的铺砌跑道 (03/21) 和一个长 64 英尺、宽 64 英尺的铺砌直升机停机坪 (H1)。GYR 建于二战期间,当时是美国海军航空站,战后用于存放退役的军用飞机。该机场后来被菲尼克斯市收购,现在作为菲尼克斯天港国际机场的通用航空中继站。GYR 距离克利夫兰印第安人队和辛辛那提红人队的美国职业棒球大联盟春季训练设施不到一英里,每年吸引成千上万的州外游客前往亚利桑那州。除了作为商务和休闲旅客的门户之外,GYR 还支持各种通用航空活动和商业租户。最值得注意的是,该机场拥有多家专业航空服务运营商,包括多家飞机维护、维修和大修 (MRO) 设施,负责维护和修理大型商用喷气式飞机。Lux Air Jet Center 是该机场的固定基地运营商 (FBO),为 Part 121 认证的商业航空公司、GA 用户以及使用各种飞机和重型运输工具的政府和军事运营商提供燃料和其他支持服务。
也开始使用热电系统从道路中提取热能并将其直接转换为电能。该项目采用了不同的概念,因为通过光伏,太阳辐射直接在面板表面转换为电能,而无需热量或振动转换。太阳能道路可以通过停车场和车道(由太阳能道路面板组成)将其电力分配给与系统连接的所有企业和家庭。除了电力之外,数据信号(有线电视、高速互联网、电话等)也通过太阳能道路传输,太阳能道路充当这些信号(电缆)的管道。此功能消除了我们在乡村各地看到的电线、电线杆和中继站。它还消除了因电线或电线杆倒塌或断裂而导致的电力中断。太阳能道路启用的驾驶基础设施将产生三倍于总电力需求的电力,大约是铺设沥青路成本的三倍,但更耐用。道路还可以与驾驶员沟通,通过视觉信息提醒驾驶员人行横道上有行人。它们可以让新兴的电动汽车经济变得更加实惠,也更易于管理。它们可以帮助我们每年减少数亿卢比甚至更多的化石燃料外部成本。而且,我们可以引领世界强大的清洁能源技术出口,能够减少大量污染和温室气体排放。2009 年,美国的“太阳能公路”获得了联邦公路管理局的合同,建造有史以来第一个太阳能公路板原型。