全基因组关联研究已发现许多与复杂疾病相关的常见和罕见种系遗传变异,包括单核苷酸多态性 (SNP)、拷贝数变异 (CNV) 和其他组成结构变异。然而,很大一部分疾病易感性仍无法解释,通常称为缺失遗传性。一个越来越受关注的领域是受精后出现的遗传变异,称为嵌合体突变,发生在细胞分裂过程中。携带有害突变的细胞可能通过修复机制、细胞凋亡或免疫监视被消除,而其他细胞可以将其突变传递给子细胞。因此,在早期胚胎发育过程中,每次细胞分裂都会保留一个或多个合子后突变。随着发育的进展,这些突变不断积累,导致细胞间基因组景观多样化。因此,大多数细胞最终携带独特的基因组。虽然许多嵌合体突变可能是中性的,但某些突变可能是致病的。嵌合体可发生在体细胞和生殖细胞中,体细胞嵌合体最近因其在神经遗传疾病中的潜在作用而受到关注。合子后突变涵盖所有主要的突变类型,包括染色体非整倍体、大规模结构异常、CNV、小插入/缺失和单核苷酸变异。其中,嵌合性染色体改变,也称为体细胞CNV(sCNV),通常是由于胚胎发生过程中的染色体不稳定性造成的。这些突变主要发生在合子后或胚胎发育早期,偶尔由合子后对减数分裂错误的部分挽救而引起,导致细胞亚群携带这些突变。值得注意的是,sCNV 在人类神经元中大量存在(1)。大脑主要从外胚层发育而来,而血细胞起源于中胚层。细胞比例高的体细胞突变更有可能发生在发育早期。如果这些突变出现得足够早,例如在原肠胚形成期间或之前,它们可能同时存在于脑细胞和血细胞中。随着个体年龄的增长,克隆性造血会导致血细胞中积累大量高细胞分数体细胞突变,而这些突变可能不存在于其他组织中。因此,分析年轻个体血液的基因组数据可以识别与大脑共有的体细胞突变,为了解脑部疾病的遗传易感性提供有价值的见解(图 1)。目前至少有 8 个实验平台可用于检测 sCNV。表 1 比较了这些分子检测的分辨率、优点和缺点。其中,
自 1961 年首次发现骨髓来源的多能干细胞以来,干细胞研究取得了长足进步 [ 1 ]。干细胞是一种独特的细胞,能够通过有丝分裂不断复制,从而形成更多的细胞。该过程会产生两种不同的细胞类型:一种会进化为特定细胞类型,另一种则保留自我更新的能力 [ 2 ]。干细胞大致可分为三类:诱导多能干细胞 (iPSC)、胚胎干细胞 (ESC) 和成体干细胞 (ASC) [ 3 ]。由于 iPSC 和 ESC 能够转化为三个胚层:外胚层、中胚层和内胚层,因此它们被归类为多能干细胞 (PSC)。2006 年,Kazutoshi Takahashi 和 Shinya Yamanaka 通过使用病毒载体引入 Oct4、Sox2、Klf4 和 c-Myc 等特定转录因子,成功将小鼠体细胞转化为 iPSC [ 4 ]。此后,人们使用各种方法将不同类型的小鼠和人类体细胞重新编程为 iPSC [ 5 ]。这种重新编程人类细胞的创新方法引起了科学和医学领域的极大兴趣。iPSC 作为多能细胞来源,为人类 ESC 提供了一种替代方案。诱导多能干细胞的一个显著优势是它们来源于可以非侵入性获得的体细胞。这些细胞携带个体的遗传特征,可以降低免疫排斥的风险 [ 6 ]。现代医学领域对基于 iPSC 的疗法的关注度正在提高。它们在疾病建模、药物筛选和再生医学中的应用正在呈指数级增长 [ 7 ]。iPSC 因其自我更新能力和分化为所有人体细胞类型的能力而在疾病建模中发挥着关键作用。这使得它们成为创建各种疾病模型以供研究的理想选择 [ 8 – 10 ]。患者特异性 iPSC 在制定有针对性的治疗策略和药物开发方面特别有价值。此外,来自正常细胞和患病细胞的 iPSC 可以分化为神经元、肝细胞、心肌细胞等,以评估毒性和副作用,这是治疗分子开发的关键因素 [11]。在再生医学中,iPSC 用于修复或再生受损或退化的组织。这是通过在实验室中从 iPSC 创建器官组织并将其移植到受伤区域来实现的。这种疗法有望用于治疗造血系统疾病、肌肉骨骼损伤、脊髓损伤和肝损伤等疾病 [ 12 – 14 ]。已经开发出各种用于创建 iPSC 的技术,例如使用逆转录病毒或慢病毒进行基因转导和化学诱导。然而,生成 iPSC 的过程通常很慢且效率不高,啮齿动物细胞需要大约 1-2 周,人类细胞需要 3-4 周,成功率通常较低。此外,通过检查菌落形态来评估 iPSC 的质量容易出现人为错误,这是一个重大挑战,在进行进一步的实验或治疗用途之前必须解决这一问题。尽管在提高 iPSC 培养的效率和速度方面取得了进展,但该过程仍然耗费资源,因此需要开发自动化系统以最大限度地减少错误并增强 iPSC 分析。最近,人工智能 (AI) 技术,包括机器学习 (ML) 和深度学习 (DL),已被用于增强再生疗法。这些 AI 驱动方法的实施可以改进
