图1。ndnio 2中的电荷顺序[24]:(a)从钙钛矿Ndnio 3(灰色)到Infinite-Layer ndnio 2(红色)的还原途径的示意图,具有各种中间状态(蓝色); (b) - (d)样品J的茎结果,可以在面板(d)中区分根尖氧空位,从而导致Q//≈(1/3,0)在傅立叶变换图像(b)中的超晶格峰; (e)在Q //≈(1/3,0)围绕Ni L 3边缘处的弹性RXS测量,实体和虚线分别是具有σ和π偏振入射X射线的数据; (f)在ND M 5边的RXS测量; (g),(h)带有样品C和D的固定波形的RXS信号的能量依赖性,阴影区域表示标称电荷顺序贡献。黑色和红色箭头突出显示了Ni 3D-RE 5D杂交峰和Ni L 3主共振,样品C的中间状态比样品D较大,从而导致超晶格峰更强。
摘要 我们提出了一种实现离散时间量子行走和模拟基于腔的量子网络中拓扑绝缘体相的协议,其中单个光子是量子行走者,采用多个腔输入输出过程来实现偏振相关的平移操作。可以通过调整单光子偏振旋转角度来模拟不同的拓扑相。我们表明,通过测量最终的光子密度分布可以直接观察到拓扑边界态和拓扑相变。此外,我们还证明了这些拓扑特征对实际缺陷具有很强的鲁棒性。我们的工作为使用基于腔的量子网络作为量子模拟器来研究离散时间量子行走和模拟凝聚态物理开辟了新的前景。
振动共振扩增通过使用添加性非谐波高频调节来填充弱的低频信号。对综合非线性纳米腔中弱信号增强的实现对于光信号可能具有低功率的纳米光应用引起了极大的兴趣。在这里,我们报告了在热式光子光子晶体彩态机械谐振器中对vi-Brational共振的实验性观察,其放大率高达+16 dB。可以使用膜的机械谐振来有趣的表征,该膜与腔与腔体的强热耦合。相变和双孔电势已被广泛利用,以放大或检测弱信号。1在科学的各种领域观察到的这种一般的物理概念是振动恢复2(VR)现象的核心。作为与众所周知的随机共振的类比,3 VR使用高频(HF)的周期性信号来实现低频(LF)输入信号。理论上已经在不同类型的非线性系统中进行了研究,例如在神经网络中,4在可激发系统5或生物网络中。6
摘要 - 本文使用传输矩阵方法对分布式反馈(DFB)腔模型进行了深入研究,以优化光子应用中的光学性能。分析了各种参数,包括有效的折射率,光栅长度和空腔长度,以观察它们对DFB腔的反射率和透射率的影响。数值模拟,以建模光与腔内周期性变化的相互作用。结果显示最佳配置,可以增强DFB腔中的波长选择性。这项研究有助于设计有效的光子设备,特别是在激光器和光学滤镜中。模拟为指导高性能DFB激光器的发展提供了重要的见解。
腔量子电动力学通过将谐振器与非线性发射器 1 耦合来探索光的粒度,在现代量子信息科学和技术的发展中发挥了基础性作用。与此同时,凝聚态物理学领域因发现底层拓扑 2 – 4 而发生了革命性的变化,这种拓扑变化通常源于时间反演对称性的破缺,例如量子霍尔效应。在这项工作中,我们探索了拓扑非平凡的 Harper-Hofstadter 晶格 5 中 transmon 量子比特的腔量子电动力学。我们组装了铌超导谐振器 6 的晶格,并通过引入亚铁磁体 7 来破缺时间反演对称性,然后再将系统耦合到 transmon 量子比特。我们用光谱方法分辨晶格的各个体模式和边缘模式,检测激发的 transmon 和每个模式之间的 Rabi 振荡,并测量 transmon 的合成真空诱导兰姆位移。最后,我们展示了利用 transmon 计数拓扑能带结构每个模式内单个光子 8 的能力。这项工作开辟了实验手性量子光学 9 领域,使微波光子的拓扑多体物理成为可能 10,11,并为背向散射弹性量子通信提供了途径。由光构成的材料是量子多体物理学的一个前沿 12 。依靠非线性发射器来产生强光子 - 光子相互作用和超低损耗超材料来操纵单个光子的属性,这个领域探索了凝聚态物理和量子光学的接口,同时生产用于操纵光的设备 13,14。最新研究成果表明,光子在具有拓扑特性15的光子中会经历圆形时间反转破缺轨道,这为探索诸如(分数)量子霍尔效应2、3、Abrikosov晶格16和拓扑绝缘体4等固态现象的光子类似物提供了机会。在电子材料中,圆形电子轨道是由磁或自旋轨道耦合4产生的。与电子不同,光子是电中性物体,因此不会直接与磁场耦合。因此,人们正在努力为光子生成合成磁场,并更广泛地探索在合成光子平台中拓扑量子物质的概念。光学和微波拓扑光子学都在这一领域取得了重大进展。在硅光子学 17、18 和光学 19、20 中,通过在偏振或空间模式中编码伪自旋,已经实现了合成规范场,同时保持了时间反转对称性。在射频和微波超材料中,已经探索了具有时间反转对称性 21、22 和破缺时间反转对称性的模型,其中时间反转对称性破缺由以下因素引起:
摘要:激光无处不在,用于信息存储,处理,通信,传感,生物学研究和医疗应用。为了减少其能量和材料的使用,一个关键的追求是将激光器降低到纳米腔。获得最小的模式量需要等离激液腔,但是对于这些,增益仅来自一个或几个发射器。到目前为止,由于增益低和空腔损失高,在此类设备中的激光是无法实现的。在这里,我们演示了一种接近单分子发射极制度的等离激液量的“发射器激光”的形式。少数发射机的激光过渡显着宽广,取决于分子的数量及其各个位置。我们表明,可以通过开发一种延伸以前的弱耦合效率的方法来理解这种非标准的少数发射机。我们的工作为开发纳米剂应用以及以少数发射器的极限开发的基础研究铺平了道路。
摘要:激光无处不在,用于信息存储,处理,通信,传感,生物学研究和医疗应用。为了减少其能量和材料的使用,一个关键的追求是将激光器降低到纳米腔。获得最小的模式量需要等离激液腔,但是对于这些,增益仅来自一个或几个发射器。到目前为止,由于增益低和空腔损失高,在此类设备中的激光是无法实现的。在这里,我们演示了一种接近单分子发射极制度的等离激液量的“发射器激光”的形式。少数发射机的激光过渡显着宽广,取决于分子的数量及其各个位置。我们表明,可以通过开发一种延伸以前的弱耦合效率的方法来理解这种非标准的少数发射机。我们的工作为开发纳米剂应用以及以少数发射器的极限开发的基础研究铺平了道路。
引起抑制所需的浓度仅略高于微管蛋白浓度。在相同浓度和较高浓度下的细胞切拉蛋白B(CB)没有明显的作用。细胞切拉蛋白A还抑制秋水仙碱结合活性,表明它含有小管蛋白分子。结果表明Ca与微管蛋白的硫基团的反应是为了作用。” 从此摘要中解读得知细胞切拉斯蛋白A有抑制微管蛋白自我组合的效果,而细胞切拉斯蛋白a colchicine与粉Tubulin的结合能力,作者只是,“建议”这样的效果可能是因为微管蛋白
董事会特此宣布,2025年2月14日,(i)Beihai Xinhe(该公司的间接子公司)与LVXIANG Resources签订了Beihai Asset转移协议,根据Beihai Xinhe,LVXiang Resources应出售,Beihai Resources应收购Beihai Assets Assets Assets Assets Assets Assets; (ii)Zhanhua Huihong(公司的间接子公司)与LVZHI Resources签订了Zhanhua资产转让协议,根据Zhanhua Huihong的出售,Lvzhi Resources应获得,Zhanhua Target Altarg Target Assets; (iii)Weiqiao Aluminum&Power(公司的间接子公司)签订了与Weiqiao可再生的香港股权转让协议,根据Weiqiao Aluminum&Power way weiqiao Alluminum&Power应出售,Weiqiao可再生可再生产应获得,全部股权获得了香港的资源。
周燕萍 ( 通信作者 ), 硕士 , 研究员 , 主要研究方向为半导体材料的刻蚀工艺开发 。E-mail:yanping_zhou@ ulvac. com
