2024 年 11 月 8 日 — 防卫省竞赛。资格。无。备注。4 规格发布地点、合同条款等的发布地点、联系点和提交地点。611-0031 京都府宇治市广野町 Furokakigaito 1-1,日本陆上自卫队大久保……
第 2 周菜单 • 烧烤鸡胸肉、鸡肉煎牛排配白汁、或玉米饼脆皮罗非鱼配塔塔酱 • 乡村土豆泥配糙肉汁或野米 • 西兰花小花或甜玉米 • 沙拉配调料、黄油小面包、蛋糕和饮料
野间美纪子被派往美国陆军驻日部队吴港 6 号码头公共工程局,拥有近 25 年的工作经验。她的经历使她成为该地区环境保护和历史保护的关键人物,证明了她的专业精神和奉献精神。
现有的基于深度学习的高光谱图像 (HSI) 分类工作仍然受到固定大小感受野的限制,导致难以针对具有各种尺寸和任意形状的地面物体获取独特的光谱空间特征。同时,许多先前的工作忽略了 HSI 中的非对称光谱空间维度。为了解决上述问题,我们提出了一种多阶段搜索架构,以克服非对称光谱空间维度并捕获重要特征。首先,光谱空间维度上的非对称池化最大限度地保留了 HSI 的本质特征。然后,具有可选感受野范围的 3D 卷积克服了固定大小的卷积核的限制。最后,我们将这两个可搜索操作扩展到每个阶段的不同层以构建最终架构。在 Indian Pines 和 Houston University 等两个具有挑战性的 HSI 基准上进行了大量实验,结果证明了所提出方法的有效性,与相关工作相比具有更优越的性能。
这个独特的研讨会将带您在森林中进行沉默的探索,与自然进行真正的对话,并实现深厚的精神共鸣。您将体现动物侦探,通过观察来学习当地野生动植物,并有更多机会接近被救出的动物,进一步加深与它们的联系。
目的:开发和评估一种自动化全脑放射治疗 (WBRT) 治疗计划流程,该流程具有基于深度学习的自动勾勒轮廓和可定制的基于标志的射野孔径设计。方法:该流程包括以下步骤:(1) 使用深度学习技术在计算机断层扫描和数字重建的 X 光片上自动勾勒正常结构轮廓,(2) 使用射束视角定位标志结构,(3) 根据八种不同的标志规则生成射野孔径,以满足不同的临床目的和医生偏好。为进行质量控制,开发了两种并行的射野孔径生成方法。将生成的射野形状和剂量分布的性能与原始临床计划进行比较。来自四家医院的五名放射肿瘤学家评估了计划的临床可接受性。结果:通过临床使用的 182 名患者的视野孔径的豪斯多夫距离 (HD) 和平均表面距离 (MSD) 来评估生成的视野孔径的性能。第一种方法生成的视野孔径的平均 HD 和 MSD 分别为 16 ± 7 和 7 ± 3 毫米,第二种方法生成的视野孔径的平均 HD 和 MSD 分别为 17 ± 7 和 7 ± 3 毫米。第一种方法和第二种方法之间的 HD 和 MSD 差异分别为 1 ± 2 毫米和 1 ± 3 毫米。对 30 位患者进行的视场孔径设计临床审查显示,第一种方法和第二种方法的接受率均为 100%,计划审查显示第一种方法的接受率为 100%,第二种方法的接受率为 93%。第一种方法符合镜片剂量建议的平均接受率为 80%(左镜片)和 77%(右镜片),第二种方法为 70%(左镜片和右镜片),而临床计划的接受率为 50%(左镜片)和 53%(右镜片)。结论:本研究提供了一种自动化流程,其中包含两种视场孔径生成方法,可自动生成 WBRT 治疗计划。定量和定性评估均表明,我们的新流程与原始临床计划相当。
Erwan Bourdonnais,CédricLeBris,Thomas Brauge,Graziella Midelet。跟踪英国河道和北海地区野生平菲鱼中的抗菌抗性指示基因:一个健康问题。环境污染,2024,343,pp.123274。10.1016/j.envpol.2023.123274。hal- 04384404
野薯作物 - 父亲田,番茄和艾伯根 - 全田和温室,葫芦科,可食用的果皮 - 温室 - 温室,葫芦科,不可用的果皮 - 全田,lettuces,lettuces等(*)(*)(*) Spinacio,微风/海岸。田间,新鲜草药 - 全田
1998年于东京大学研究生院文化研究科取得语言情报科学博士学位。哲学博士(学术)。现为电气通信大学信息科学与工程研究生院和人工智能高级研究中心的教授。自 2020 年起,他一直担任该大学副校长。日本学术会议准会员。 该协会前任理事。 Kansei AI Inc. 董事兼首席运营官智慧城市研究所执行顾问内阁办公室数学、数据科学和人工智能教育计划认证体系审查委员会成员。其著作《坂本真木教授教授的人工智能相关知识几乎全部教给你的书》(Ohmsha,2017年)被收录于2020年4月采用的日本教科书(学校图书馆)中。
