我们报告了YBA 2 Cu 3 O 6 + X薄膜的非线性Terahertz第三谐波生成(THG)的测量。与常规超导体不同,THG信号开始出现在正常状态下,这与广泛掺杂水平的伪gap的交叉温度t *一致。降低温度后,THG信号在最佳掺杂样品中显示出低于T C以下的异常。值得注意的是,我们直接观察到THG信号的实时波形中的节拍模式。我们阐述的是,HIGGS模式在T C下方开发的HIGGS模式与已经在T *下面开发的模式伴侣,从而导致能级分裂。但是,这种耦合效应在被压倒性的样品中并不明显。我们探索了观察到的现象的不同潜在解释。我们的研究提供了对超导性和伪群之间相互作用的宝贵见解。
缩写:cus¼颅骨超声; IVH¼1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/4 NICU¼新生儿重症监护室; PMA¼经期年龄;茶¼任期等效年龄;早产儿中WMI¼白质损伤W MI损伤(WMI)是共同体的,并且与不良神经发育结果有关。1,2它仍然是易受伤害的大脑中最普遍的脑损伤形式,对于那些23至32周之间出生的婴儿的风险最高。3尽管在32周出生的胎龄中有5%的婴儿在MR成像中出现的局灶性坏死在MR成像中出现的局灶性坏死在15% - 25%的婴儿,28周的25%的婴儿中,其中28周的15% - 25%的婴儿可能会出现,但最多可与胶质变体相差, 3的 3。 3颅骨超声检查(CUS)是新生儿进化护理单元(NICU)中使用最广泛且最容易获得的神经影像学技术。 对特别有用且敏感3的 3。 3颅骨超声检查(CUS)是新生儿进化护理单元(NICU)中使用最广泛且最容易获得的神经影像学技术。 对特别有用且敏感3。3颅骨超声检查(CUS)是新生儿进化护理单元(NICU)中使用最广泛且最容易获得的神经影像学技术。对
客观 - 解决术中超声中识别和描述脑肿瘤所带来的挑战。我们的目标是在经验丰富的神经肿瘤内超声用户(神经外科医生和神经神经毒物学家)中,在质量和定量评估观察者之间的变化,在超声波上检测和分割脑肿瘤。然后,我们建议,由于这项任务的固有挑战,通过将整个肿瘤质量进行注释,可以用一个边界盒作为临床培训的分割的辅助解决方案,包括余量不确定性和大型数据集的策划。方法 - 30例患者的脑病变的30张超声图像由4个注释剂 - 1名神经放射科医生和3个神经外科医生。首先测量了3个神经外科医生的注释变化,然后将每个神经腐烂的注释分别与神经放射科医生的注释分别进行比较,神经放射科医生的术语是参考标准,因为它们的分割是通过交叉引用到术前MRI进一步完善的。使用了以下统计指标:相交
图5说明了独立的组织病理学评估的结论。通过Echo2Pheno(ACNAT2,CMAS,DNAJB14,ECHS1,ECHS1,ERGIC2,GSTM1)验证了六项无关紧要的研究。在那些情况下,组织学检查在所有研究中揭示了结构正常的心脏(图5b),确认我们的发现。四个手动得出的大量研究通过Echo2Pheno(CISD1,DMD,FabP2,ZFP280D)进行了验证。四分之一的CISD1突变体显示出中度的LV扩张,而DMD突变体没有LV改变,而是局灶性心肌炎症,支持本研究中的EF和FS改变。FABP2心脏正常,而四个检查的ZFP280D雄性突变体中有两个lvs扩张,炎症性浸润,纤维化和坏死灶中的一个
材料和方法:我们回顾性地使用了55例以急速方案进行胎儿脑MR成像的孕妇。儿科神经放射学家选择了它们在矢状单摄影T2加权图像上进行具有里程碑意义的注释,并将临床可靠的方法用作测量PON和Vermis的标准标准。开发了一种基于U-NET的深度学习模型,以自动识别胎儿脑解剖学标志,包括PON的两个前后地标和2个前后和2个前后和2个上层标记。进行了四倍的交叉验证,以使用随机分配和分类的妊娠年龄(分隔的数据集)测试模型的准确性。为每个测试案例生成了模型预测的置信分数。
在 MAIUS 探空火箭任务中 [ 1 ] 成功产生和研究了原子玻色-爱因斯坦凝聚态,以及在国际空间站 (ISS) 上持续运行的冷原子实验室 (CAL) 用户设施 [ 2 ] 表明,可以在自由落体实验装置中进行超冷原子物理研究。这些实验利用了真空室内自由演化的超冷原子与真空室本身之间不存在差异重力加速度的情况。也就是说,在没有任何故意施加的力的情况下,量子气体仍然惯性地限制在实验装置的观测体积内。在这些装置内进行的实验充分利用了微重力的特性,例如,可以长时间观测自由膨胀的玻色-爱因斯坦凝聚态气体,通过原子光学操控将这些气体的膨胀能量最小化到皮开尔文能量范围 [ 3 , 4 ]。其他实验则利用微重力为超冷原子施加新的捕获几何形状,即通过射频修整磁捕获势产生的球壳(气泡)势,否则这些原子会因重力下垂而严重扭曲 [ 5 ]。已经设想了一个针对微重力下超冷原子和分子气体的综合研究议程,这一愿景正在指导 CAL 及其潜在升级的开发,以及 NASA 和德国航天局 (DLR) 的玻色-爱因斯坦凝聚态和冷原子实验室 (BECCAL) 联合任务的开发 [ 6 ]。如其他地方所讨论的 [7],自由落体超冷原子实验装置中的无背景电位环境开辟了几个引人注目的研究方向。这些方向包括开发具有增强询问时间的原子干涉仪并利用惯性将物质波限制在物理对象附近的能力;研究相干原子光学,利用长时间追踪近单色物质波演化的能力;研究新型捕获几何中的标量玻色-爱因斯坦凝聚体;研究大型三维体积和均匀条件下的旋量玻色-爱因斯坦凝聚体和其他量子气体混合物;研究大范围内强相互作用的原子和分子量子气体
尽管已有健康志愿者中心律失常患病率的估计值,但缺乏其他特定人群的基线数据,例如越来越多地参与临床试验的超重和肥胖人群。本研究调查了两项体重管理药物 1 期试验(NCT03661879、NCT03308721)中超重或肥胖参与者的心律失常基线患病率。参与者年龄为 18– 55 岁,无心血管疾病史,体重指数 (BMI) 为 25.0–39.9 千克/米 2,接受生命体征、心电图 (ECG) 记录和电解质异常筛查。心脏病专家收集并手动审查基线 24 小时心电图 (Holter) 数据。主要终点是发生预定义心律失常≥ 1 次的参与者比例。从 207 名参与者那里获得了连续 12 导联心电图数据。大多数心律失常发生在 < 3% 的参与者中。房室传导阻滞和其他潜在恶性心律失常并不常见。与年龄、性别或 BMI 无关。房室传导阻滞、非持续性室性心动过速和其他潜在恶性心律失常的患病率与体重正常的健康参与者报告的患病率相似。在体重管理药物的临床试验中,了解超重和肥胖人群心律失常的基线患病率可能会为试验资格标准提供信息,改善试验决策,并有助于与卫生当局的讨论。如果心律失常风险是分子固有的,或者在临床前研究中已经观察到信号,则应在这些试验中考虑基线 Holter 读数和实时心电图遥测监测。
X. Ma, H. Bin, BT van Gorkom, TPA van der Pol, MJ Dyson, CHL Weijtens, SCJ Meskers, RAJ Janssen, GH Gelinck 埃因霍温理工大学 PO Box 513, Eindhoven 5600 MB, 荷兰 电子邮件: rajjanssen@tue.n l M. Fattori 电气工程系 埃因霍温理工大学 PO Box 513, Eindhoven 5600 MB, 荷兰 AJJM van Breemen, D. Tordera, GH Gelinck TNO/Holst Center High Tech Campus 31 Eindhoven 5656 AE, 荷兰 瓦伦西亚 C/ Chair of J. Beltran 2, Paterna 46980, 西班牙 RAJ Janssen 荷兰基础能源研究所 De Zaale 20, Eindhoven 5612 AJ, 荷兰