摘要心力衰竭(CI)是各种心脏病的常见并发症,并作为病理生理机制,降低收缩力,增加舒张压以及肺部和全身充血。从这个意义上讲,这是一个严重的公共卫生问题,死亡率很高,对生活质量的影响以及与住院相关的高成本。尽管过去20年的巴西住院下降,但与IC相关的死亡率增加了一倍。鉴于这种情况,该研究试图分析IC与贫血的关系,以解决其病理生理方面,临床影响和预后,旨在更好地了解这些临床实体。为构建本文,对BVS,PubMed和Capes Journal Portal的精选出版物进行了文献综述。研究使用了诸如“贫血”,“心力衰竭”和“病理学”及其英语版本等健康描述符,从DEC中提取。描述符的组合是与布尔操作员“和”一起制成的,也被认为是灰色文献研究。此外,纳入标准是:具有整体访问的研究,在过去20年(2005 - 2024年)和西班牙语,英语或葡萄牙语中发表。排除标准是:未发表的研究,在研究范围之外无法全面访问。从这个意义上讲,铁缺乏症是所研究的贫血的结果是至关重要的,因为在血红蛋白和红细胞合成中必须铁。这种情况的特征是铁代谢的放松管制,包括高水平的炎性细胞因子(例如IL-6和TNF-α)改变了肠道中铁的吸收以及在巨噬细胞和肝细胞中储存的铁的释放。响应贫血的人体的补偿机制包括促红细胞生成素(EPO)和血管舒张产生的增加,试图改善提供
全世界有超过30亿人患有贫血相关的铁缺乏症,并且人数相等的人患有锌的缺乏症。这些条件在撒哈拉以南非洲和南亚地区更为普遍。在发展中国家,发现五十岁以下的儿童患增长和怀孕或哺乳期妇女的儿童受锌和铁的高度高风险。生物体质定义为开发种类的种类,其谷物含有较高水平的微量营养素,例如铁和锌,是最有前途的,成本效益和可持续的方法之一,可以改善资源贫乏家庭的健康状况,尤其是在家庭中融合了某些部分生长的家庭中的农村地区。通过小麦中的常规育种(尤其是谷物锌和铁)进行的生物体现,从野生和相关物种转移了重要的基因和定量性状基因座(QTL),从而做出了显着的贡献。尽管如此,小麦晶粒中铁和锌水平的定量,遗传复杂的性质限制了传统繁殖的发展,因此很难获得产量和晶粒矿物质浓度的遗传增益。小麦生物增强物可以通过增强矿物质吸收,矿物质的来源到链接易位以及它们沉积到谷物中以及矿物质的生物利用度来实现。在小麦中检测到了许多对这些特征的QTL,具有重大和较小的效果;将最有效的繁殖线引入将增加谷物锌和铁浓度。实现此目标的新方法包括标记辅助选择和基因组选择。需要合并更快的育种方法,以同时增加小麦育种线中的谷物矿物质含量和产量。
肾缺血再灌注 (I/R) 损伤可导致肾功能不全,严重情况下需要肾脏替代治疗,给患者的康复和生活带来沉重负担。减轻肾脏 I/R 损伤是当前的研究重点。蛋白激酶 C (PKC) 同工酶是肾脏中的主要同工酶,PKCβII 是其主要同工酶。铁死亡在肾脏 I/R 导致的急性肾损伤中起着至关重要的作用。本研究旨在探索 PKCβII 在肾脏 I/R 中的作用及其与铁诱导细胞死亡的潜在关联。该研究使用小鼠肾脏 I/R 模型,检查了各种预处理方法(包括 Ruboxistaurin(一种 PKCβII 抑制剂)和 Erastin(一种铁死亡激动剂))对肾脏损伤的影响。该研究还深入探讨了 PKCβII 在铁诱导细胞死亡中的作用及其潜在机制。研究结果表明,PKCβII 在肾脏 I/R 过程中被激活,抑制 PKCβII 激活可改善肾功能障碍和组织损伤。此外,肾脏 I/R 损伤中铁诱导的细胞死亡显著增加,而抑制 PKCβII 可通过抑制 PKCβII/ACSL4 通路来减轻铁死亡。总之,结果表明 PKCβII 可能参与介导肾脏 I/R 损伤,而针对性抑制 PKCβII 激活可能成为改善肾脏 I/R 损伤的一种新疗法。
在密切相关的5 f-电子系统中,由于波函数的扩展,与可比强度的相互作用竞争。这场竞争导致了各种各样的外来状态,这几乎无法用D - 或4 F-电子物理学的常规模型来理解[1]。在基于金属U的重型费米化合物中,周围配体具有强大的杂交作用,异常阶段的异常共存发生为例如,例如,在隐藏的阶超导体URU 2 SI 2中。发现热量异常的“隐藏顺序”参数的性质仍在辩论之后,在发现后30年以上[2]。UPT 2 Si 2是U T 2 M 2(T =过渡金属; M = SI或GE)家族的紧密相关的金属间化合物,其PT-5 D电子与U-5 F状态杂交。UPT 2 Si 2采用CABE 2 GE 2晶体结构,并在t n = 35 k处磁性下命令,带有波矢量q m =(1 0 0 0),其中铁磁AB平面沿C轴堆叠了抗磁力(AFM),沿C轴堆叠,并具有≈2μb[3-5]。因此,长期以来,UPT 2 Si 2被认为是铀间金属化合物具有局部5 F电子的罕见例子,在简单的晶体领域水平方案中可以解释磁性[4]。然而,最近的一些研究[6-9]质疑该系统中电子定位程度。高场测量结果表明,应根据费米表面效应来理解应用磁场下的相变[6]。最近的一项无弹性中子散发研究揭示了双重性质,两者都巡回通过密度功能理论(DFT)计算进一步支持这种方法,该计算有利于5 f电子大部分巡回的情况[7]。
人类免疫缺陷病毒(HIV)感染显着影响铁代谢,这是细胞功能和全身健康的关键方面。ceruloplasmin是一种含铜的铁氧化酶,通过氧化铁铁(Fe^2+)氧化为铁(Fe^3+),在维持铁稳态方面起着关键作用,从而促进了通过转铁蛋白的运输。HIV中铁代谢的失调是由慢性炎症,肝素水平升高和细胞因子谱改变的介导的,导致铁固次和贫血。本综述探讨了在艾滋病毒的背景下,Ceruloplasmin和铁代谢之间的复杂相互作用,强调了它们对疾病进展和治疗干预的影响。在HIV感染的个体中,慢性炎症升高了促炎细胞因子(如IL-6和TNF-α),进而增加肝素的产生。升高的肝素水平抑制肠道吸收并促进巨噬细胞中的铁保留,破坏了正常铁的代谢。作为急性期反应物,Ceruloplasmin在炎症过程中被上调,进一步使铁动员和储存复杂化。由此产生的失衡导致贫血,这是HIV中常见的并发症,加剧了疾病的发病率。此外,与HIV和Ceruloplasmin功能障碍相关的氧化应激会损害红细胞,从而降低其寿命并损害红细胞生成。抗逆转录病毒疗法(ART)已彻底改变了HIV治疗,从而显着改善了患者的预后。了解这些影响对于优化ART方案和管理与HIV相关的代谢障碍至关重要。然而,ART还会影响铁代谢和Ceruloplasmin水平,通常会诱导氧化应激并改变炎症反应。潜在的治疗策略包括抗炎治疗,抗氧化剂
封装在介孔碳 (MC) 中的 Al 掺杂磁铁矿尖晶石纳米粒子被认为是一种有前途的非均相 Fenton 催化剂,可用于实际应用中的连续苯酚降解。在固定床反应器内的工作条件下,制备的 21%γ-Fe 2 O 3 /28%FeAl 2 O 4 @MC 材料中的铁铝尖晶石与 H 2 O 2 发生反应。在该反应中,Al 离子占据了 γ-Fe2O3 组分框架中的空八面体阳离子位,将其转化为 Al 取代的磁铁矿尖晶石。获得的 Fe 3+ 0.66 Fe 2+ 0.33 (Fe 2+ 0.33 Fe 3+ 0.33 Al 3+ 0.33 ) 2 O 4 @MC 中的 Al 通过其路易斯酸特性使铁离子的电子极化,从而使铁离子 (Fe n+(δ+) ) 带上更多的正电荷。这加快了具有挑战性的还原反应 Fe 3+ → Fe 2+ 与 H 2 O 2 生成 HOO˙ 的速度,并加强了尖晶石中铁离子的键合,提高了它们的活性和稳定性。因此,在温和的操作条件下(pH5、40°C、8.6 mlwater/mlcat*h、0.036mol H 2 O 2、200ppm 苯酚),原位生成的催化剂 Fe(Fe 0.66 Al 0.33 ) 2 O 4 @MC 为 35 nm,含有 19.9%Fe 和 2.4%Al,表面积为 335 m 2 /g,在 500 小时的运行中表现出持久的高催化活性和稳定性。在催化性能没有明显变化的情况下,获得了 80% 的 TOC 转化率和处理水中约 1ppm 的浸出 Fe。
摘要:在许多疾病中越来越多地观察到铁代谢受损,但是仍然缺乏对改变铁代谢的细胞影响的更深入的机械理解。此外,描述了阿尔茨海默氏病(AD)及其合并症(如肥胖,抑郁症,心血管疾病和2型糖尿病)的合并症,描述了由于葡萄糖进口减少而导致的神经元能量代谢的遗嘱。这篇综述的目的是介绍两个观察结果之间的分子联系。不足的细胞葡萄糖摄取诱导者增加了铁蛋白的表达,从而导致细胞不含铁池的耗竭并稳定缺氧诱导的因子(HIF)1α。该转录因子诱导葡萄糖转运蛋白(GLUT)1和3的表达,并将细胞代谢转移到糖酵解。如果这条防线不足以足以满足能力的葡萄糖供应,则进一步减少细胞内铁池会影响线粒体电子传输链的酶,并激活AMP激活的激酶(AMPK)。该酶触发了GLUT4向质膜的转运以及细胞成分的自噬回收,以动员能量资源。此外,AMPK激活了铁蛋白噬菌的自噬过程,该过程提供了急需的铁作为辅助因子,作为辅助因子,以合成血红素和铁 - 硫蛋白的合成。该途径的过度激活以铁铁作用而结束,这是一种特殊的铁依赖性细胞死亡形式,而阻碍AMPK激活稳步减少了铁池,导致脾脏和肝脏中铁隔离性低铁血症。持久的铁耗尽会影响红细胞生成,并导致慢性疾病的贫血,这是AD患者及其合并症的常见状况。应施用改善能源供应和细胞葡萄糖摄取的药物,饮食或植物化学物质,以抵消慢性疾病的低铁和贫血。
目的:糖尿病肾病 (DKD) 是全球慢性肾病 (CKD) 的主要原因。阐明 DKD 中铁死亡和免疫的分子机制可能有助于开发潜在有效的治疗方法。本研究旨在对 DKD 中的铁死亡和免疫相关差异表达 mRNA (DEG) 进行综合分析。材料和方法:从基因表达综合 (GEO) 数据库下载 DKD 患者和对照样本的基因表达谱。使用 R 软件筛选潜在的差异表达基因 (DEG),并从 DEG 中提取铁死亡免疫相关差异表达基因 (FIRDEG)。我们进行了功能富集分析,并构建了蛋白质-蛋白质相互作用 (PPI) 网络、转录因子 (TF)-基因网络和基因-药物网络,以探索它们的潜在生物学功能。相关性分析和受试者工作特征曲线用于评估 FIRDEG。我们使用CIBERSORT算法来检查免疫细胞的组成并确定FIRDEG特征与免疫细胞之间的关系。最后,使用RT-PCR在动物肾脏样本中验证了六种FIRDEG的RNA表达。结果:我们鉴定了80个FIRDEG并进行了功能分析。我们利用PPI网络鉴定了六个枢纽基因(Ccl5、Il18、Cybb、Fcgr2b、Myd88和Ccr2),并预测了潜在的TF基因网络和基因-药物对。DKD中的免疫细胞(包括M2巨噬细胞、静息肥大细胞和γ-delta T细胞)发生了改变;FIRDEG(Fcgr2b、Cybb、Ccr2和Ccl5)与M2巨噬细胞和γ-delta T细胞的浸润丰度密切相关。最后,在小鼠肾脏样本中验证了枢纽基因。结论:我们鉴定了 DKD 中的六个枢纽 FIRDEG(Ccl5、Il18、Cybb、Fcgr2b、Myd88 和 Ccr2),并预测了潜在的转录因子基因网络和未来研究的可能治疗靶点。关键词:糖尿病肾病、铁死亡、免疫、生物信息学
铁是与病理学缺乏效率和有毒过载相关的必不可少的痕量元素。因此,通过细胞因子和铁状态的作用,全身和细胞铁代谢是受蛋白质表达和定位以及周转调节的高度控制过程。心脏中的铁代谢具有挑战性,因为铁超负荷和缺乏效率都与心脏病有关。也与心血管疾病有关,因为许多心脏病是由或包括炎症成分引起的,因为许多心脏疾病。此外,铁代谢和炎症是紧密相连的。肝素是系统性铁代谢的主要调节剂,是由细胞因子IL-6诱导的,因此是肝脏分泌的急性相蛋白之一,作为炎性反应的一部分。在炎症状态下,全身铁稳态失调,通常导致低铁血症或低血清铁。通常是心脏铁代谢的特征不佳,甚至对炎症如何影响心脏铁处理的了解甚至更少。本评论突出了心脏中铁代谢的所知。概述了这些细胞类型中与铁代谢相关蛋白的表达以及铁摄取和EF漏的过程。 还回顾了炎症与心脏病之间密切的合并关系的证据。 强调了连接炎症和铁平衡的治疗选择,这一综述的主要目的是将注意力平衡的变化作为心血管系统炎症性疾病的组成部分。概述了这些细胞类型中与铁代谢相关蛋白的表达以及铁摄取和EF漏的过程。还回顾了炎症与心脏病之间密切的合并关系的证据。强调了连接炎症和铁平衡的治疗选择,这一综述的主要目的是将注意力平衡的变化作为心血管系统炎症性疾病的组成部分。讨论了炎症过程与铁代谢之间的已知联系,目的是将这种组织中的炎症和铁代谢联系起来,这种联系是相对不足以作为心脏功能在感染状态中的心脏功能的组成部分。
提高对电池内化学反应的认识。基于光纤的传感器特别适合集成到电池中。[1,7,9–12] 光纤成本低,可以做得非常细,从而能够在电池的不同部位进行精确定位。它们对锂离子和钠离子电池中的恶劣环境也相对惰性,并且可以使用各种基于光谱的分析技术。[7] 通过电池内温度和应变的变化进行感测,间接影响改性光纤的光学特性,也已被证明。例如,Huang 等人将光纤布拉格光栅插入商用电池,通过温度和压力跟踪化学事件,[10] 而 Wang 等人采用等离子体光纤传感器监测水性锌空气电池中的电化学动力学。[11] Ghannoum 等人在许多论文中报道了使用光纤倏逝波 (FOEW) 光谱来表征电池。 [9,13] 例如,使用嵌入式光纤根据石墨的电致变色特性估算 SOC。 [14] 我们之前还使用过 FOEW 光谱来比较完全嵌入或放置在磷酸铁锂 (LFP) 正极表面的光纤的传感和电池性能。 在这些实验中,光纤传感区域的光调制也可能与 LFP 中铁的氧化和还原有关。 [15,16] 光纤在电池中的应用仍然处于相当低的技术准备水平,在商用电池中可能并非易事,但有可能为 BMS 提供重要信息,以优化电池组的使用。 总体而言,还必须提高对电池化学如何调节光纤/电池界面光的了解。锂离子电池最关键的安全问题之一是阳极形成锂枝晶的风险。[17–19] 这会导致电池短路,通常源于充电过程中锂离子嵌入速率不够时的锂沉积。金属锂沉积也是导致电池老化的一个重要因素[17],例如导致容量衰减速度加快。人们采用了各种各样的实验技术来分析和检测锂沉积。[17–19] 然而,这些技术中的大多数都基于大型、先进且昂贵的仪器,而这些仪器通常需要专门的实验电池或原型电池。其中一些技术也不是