量子计算理论的一个基本结果,即“安全存储原理”,表明总是有可能采用量子电路并产生一个等效电路,该电路在计算结束时进行所有测量。虽然这个过程是时间高效的,这意味着它不会在门数量上引入大量开销,但它使用了额外的辅助量子比特,因此通常不是空间高效的。很自然地,人们会问是否有可能在不增加辅助量子比特数量的情况下消除中间测量。我们通过展示一种同时具有空间效率和时间效率的消除所有中间测量的程序对这个问题给出了肯定的答案。特别是,这表明空间有界量子复杂度类的定义对于允许或禁止中间测量具有鲁棒性。我们方法的一个关键组成部分(可能具有独立意义)涉及表明许多标准线性代数问题的良好条件版本可以由量子计算机在比传统计算机可能占用的更少空间中解决。
许多量子算法都利用了辅助位,即用于在计算过程中存储临时信息的额外空闲位,这些信息通常在使用后恢复到其原始状态。辅助位有多种用途,例如减少总执行时间。在某些情况下,它们可以渐进地改善电路分解的深度。这凸显了量子程序中一个重要的时空权衡——我们以辅助位的形式花费额外的空间,以减少输入电路的深度。真正的量子机器的量子比特数量有限,因此充分利用它们以更快地计算更大、更有用的问题非常重要。最近,[1] 证明了高维量子比特可以作为某些电路元件中辅助位的替代品,效果很好。虽然量子电路通常以量子比特上的二进制逻辑门来表示,但在许多量子技术中,这种两级抽象是肤浅的。超导量子比特 [2] 和捕获离子 [3] 具有无限多种可能的状态,而较高的状态通常被抑制。不幸的是,通过访问这些状态,计算会受到更多种类的错误的影响,实际上错误类型的数量在计算基数中呈二次方增长 [1]。但是,如果正确使用量子比特状态,则获得的好处会超过这种成本。具体来说,我们在计算过程中暂时使用量子比特状态,同时保持电路的二进制输入和输出。
可持续人机交互 (SHCI) 领域将环境问题添加到交互系统的设计中,无论是在制造还是使用过程中 [11]。为了让用户意识到他们的行为对环境的影响,生态反馈界面会感知并提供关于这些行为的相关信息 [6],例如:消耗的资源、产生的废物或资源状态。然而,Bremer 等人 [2] 指出,SHCI 参与者面临着以个人为中心的方法的局限性和批评,现在正转向影响团体或社区的方法。这样,以实践为导向的方法通过嵌入交互以及专业知识、规范和期望为团体和社区提供了设计框架 [1]。这种方法可以应用于能源使用问题 [1]。由于可再生能源的可用性是可变的并且没有有效的存储能力,转移能源需求是一种最大限度地利用可再生能源而不是不可再生能源的方法。为了支持住宅用户转移能源使用,Brewer 等人[3] 确定了三个挑战,这些挑战与用户对转变的理解、转变必须发生的时刻的定义以及可再生能源可用性的不可预测性有关。因此,设计转变实践具有挑战性,缺乏方法和流程。尽管无法解决所有实践方面(例如文化或政治),但我们表明,通过任务模型进行建模和分析任务可以通过识别潜在的苛刻任务并跟踪从当前实践任务到未来实践任务的实践转变来改进实践设计过程。
1丁华大学生活科学生命科学学院,合成与系统生物学中心,中国北京100084 Tsinghua大学合成与系统生物学中心。2纽约大学化学系,纽约,纽约10003,美国#这些作者同样贡献。 †已故。 *通讯作者。 电子邮件:bw@tsinghua.edu.cn(B.W. ); yoel.ohayon@nyu.edu(Y.P.O.)。 在结构DNA纳米技术的早期开发中,引入了抽象中界作为一种基本跨界构型的类型。 然而,与基于常规连接的对应物相比,从多个中型结构络合物中对自组装的调查被忽略了。 在这项工作中,我们设计了标准化的组件链,以构建复杂的中置晶格。 在1-,2和3维晶格的自组装中展示了三个带有三个和四个臂的典型介质结构,这些构造是由既有脚手架 - 脚手架 - 式瓷砖方法构建的,也是脚手架折纸方法。 引言在该领域已经确定了各种交叉和交叉基序,特别是在理论研究占主导地位的结构DNA纳米技术的早期发展期间。 到1990年代中期,基于3臂和4臂常规连接的体系结构在DNA纳米技术的发展中占主导地位2-13。 值得注意的是,在已经普遍存在的基于紧凑的螺旋,二维(2D)和三维(3D)折纸的设计中,所有交叉方案均来自4- ARM常规连接14-16。 1b)。 s1)。2纽约大学化学系,纽约,纽约10003,美国#这些作者同样贡献。†已故。*通讯作者。电子邮件:bw@tsinghua.edu.cn(B.W.); yoel.ohayon@nyu.edu(Y.P.O.)。在结构DNA纳米技术的早期开发中,引入了抽象中界作为一种基本跨界构型的类型。然而,与基于常规连接的对应物相比,从多个中型结构络合物中对自组装的调查被忽略了。在这项工作中,我们设计了标准化的组件链,以构建复杂的中置晶格。在1-,2和3维晶格的自组装中展示了三个带有三个和四个臂的典型介质结构,这些构造是由既有脚手架 - 脚手架 - 式瓷砖方法构建的,也是脚手架折纸方法。引言在该领域已经确定了各种交叉和交叉基序,特别是在理论研究占主导地位的结构DNA纳米技术的早期发展期间。到1990年代中期,基于3臂和4臂常规连接的体系结构在DNA纳米技术的发展中占主导地位2-13。值得注意的是,在已经普遍存在的基于紧凑的螺旋,二维(2D)和三维(3D)折纸的设计中,所有交叉方案均来自4- ARM常规连接14-16。1b)。s1)。最近,出现了几个用于设计和构建线框DNA纳米结构17-20的建筑框架,并且毫无例外地,它们都是基于使用不同数量的双螺旋臂的常规连接。根据早期报告21中使用的命名法,分支的DNA连接包含从中央连接点辐射的双链体(图。1a,左右);相反,一个反该功能由指向圆周方向的双链体组成(图。1a,右);介质结混合了径向双链体和圆周的双工,侧面是一个中心点(图。我们使用X y / z x y作为命名法来描述某个连接构型(例如,常规连接,反式函数和中间结),其中x代表所涉及的链总数,y径向双层双臂臂的数量,z索引数量的配置变体数量。3臂和4臂DNA连接分别称为3 3和4 4,因为所有三个或四个双链体均为径向21。同样,4臂的触及式被称为4 0,因为没有径向臂(即,所有四个臂都是圆周的)21。由于链极性施加的限制,无法构建具有三个臂的触及术(图。只能通过3臂连接设计3 1个中孔配置,由一个径向臂和两个圆周的臂组成(图。1b,左)21。可用于两个径向臂和两个圆周臂的4臂设计可用的两种不同的配置(图。我们成功的自我组装,导致了各种中间结构1b,中间和右) - 1 4 2中间结构,包括交替的径向臂和圆周臂,以及2 4 2中间结构,包括成对的径向臂和圆周的臂21。以前已经研究了21,22的基本多链中含中含量的复合物的形成,但是自引入23引入以来,多个中二结构络合物的自组装成周期性的晶格仍未实现。在这里,我们通过设计标准化的组件链来完成这项未完成的任务,以进行自组装研究中级晶格。我们首先使用三种典型的介质结构(3 1,1 4 4 2和2 4 2)基于3臂和4臂中界设计和构建一维(1D)周期性晶格。然后,我们在离散晶格的自组装中应用了中间结构。我们采用了1 4 2中间结,使用无脚手架的平铺方法以及脚手架的DNA折纸方法来构建定义尺寸的矩形。除了单双链臂外,我们还设计了两个捆绑的双工,作为一个复合臂,用于2D和3D中型晶格。
步行,骑自行车和滚动是默瑟岛(Mercer Island)的常见旅行模式,尤其是在市中心。随着今年晚些时候East Link Light火车站的开放,预计将会有更多非机动交通。第76大街SE中间街区和ADA改进项目的重点是升级现有设施,以便为市中心的所有居民和访客提供访问现有设施。该市的ADA过渡计划在2022年被市议会通过。本计划有助于指导未来的计划和在整个城市进行必要的可访问性改进。在2023 - 2024年,由ADA过渡计划完成的第一个项目完成了,在市中心建造了11个符合ADA的坡道。继续进入2025 - 2026年及以后,员工正在追求更多的ADA改进项目。位于市中心的心脏地带,现有的中间街区在7620 SE 27街和2690 76 Th Avenue SE之间的中心交叉处在给定的工作日中为近300名行人提供服务。交叉路口的相邻目的地包括零售,住房和过境设施。计划在此常用的中间越野上安装一个新的RRFB,以提高行人的能见度。第76大街SE中期交叉和ADA改进项目结合了该市六年的运输改进计划中的两个项目:76 Th Avenue SE SE中部街区穿越改进和ADA过渡计划实施。项目总预算为$ 850,368。工作范围
摘要 — 随着电力系统脱碳的加速,人们对容量扩展模型在指导这一转变中的作用越来越感兴趣。代表性周期选择是容量扩展建模的重要组成部分,它使优化具有计算可处理性,同时确保代表性周期与全年之间的保真度。然而,很少有人关注选择超过一天的代表性周期。这使得容量扩展模型无法直接模拟日间能源共享,而这在能源生产变得更加多变和存储变得更加重要的情况下至关重要。为此,我们提出了一种选择任意长度代表性周期的新方法。使用基于加州脱碳目标的容量扩展模型和生产成本模型验证了该方法。我们证明代表性周期长度对容量扩展投资计划的结果有很大影响。索引术语 — 产能扩张规划、代表期选择、生产成本建模。
量子计算理论的一个基本结果,即“安全存储原理”,表明总是有可能采用量子电路并产生一个等效电路,该电路在计算结束时进行所有测量。虽然这个过程是时间高效的,这意味着它不会在门数量上引入大量开销,但它使用了额外的辅助量子比特,因此通常不是空间高效的。很自然地,人们会问是否有可能在不增加辅助量子比特数量的情况下消除中间测量。我们通过展示一种同时具有空间效率和时间效率的消除所有中间测量的程序对这个问题给出了肯定的答案。特别是,这表明空间有界量子复杂度类的定义对于允许或禁止中间测量具有鲁棒性。我们方法的一个关键组成部分(可能具有独立意义)涉及表明许多标准线性代数问题的良好条件版本可以由量子计算机在比传统计算机可能占用的更少空间中解决。
对支持高性能的尖端材料的需求在体育行业中不断增加,这就是为什么轻巧,高度刚性的碳纤维多年来一直是一种受欢迎的材料的原因。自1970年代以来,Teijin一直在开发用于运动应用的碳纤维和碳纤维中间材料,包括钓鱼杆,高尔夫轴,曲棍球,曲棍球和网球球拍。teijin现在决定加速其使用公司专有的碳纤维技术的体育应用中碳纤维中间材料的开发,该材料部署在飞机和卫星中。tenax以拉丁语命名,以强硬或顽强的态度命名,其中包括具有出色坚韧性的中级材料,是钢的强度的五倍,但重量只有四分之一。关于Teijin Group Teijin(TSE:3401)是一个技术驱动的全球集团,在环境价值领域提供高级解决方案;安全,安全和灾难;和人口变化和增强健康意识。最初于1918年建立为日本的第一家人造丝制造商,已演变成一个独特的企业,涵盖了三个核心业务领域:高性能材料,包括Aramid,碳纤维和复合材料,以及树脂和塑料加工,薄膜,聚酯纤维和产品转换;医疗保健包括骨/关节,呼吸道和心血管/代谢疾病的药品和家庭医疗设备,护理和症状前医疗保健;它包括用于医疗,公司和公共系统的B2B解决方案,以及包装软件以及用于数字娱乐的B2C在线服务。深深地致力于其利益相关者,旨在成为支持未来社会的公司。该集团由170多家公司组成,在全球20个国家 /地区拥有约20,000名员工。Teijin在2020年3月31日的财政年度中发布了8537亿(80亿美元)的JPY销售额(80亿美元)和1,0042亿美元的总资产(94亿美元)。新闻联系公司通讯Teijin Limited pr@teijin.co.jp
摘要:分子腔内成键的氢原子经常经历隧穿或热传递过程,这些过程在各种物理现象中发挥着重要作用。此类传递可能需要也可能不需要中间态。此类瞬时状态的存在通常通过间接方式确定,而尚未实现对它们的直接可视化,主要是因为它们在平衡条件下的浓度可以忽略不计。在这里,我们使用密度泛函理论计算和扫描隧道显微镜 (STM) 图像模拟来预测,在专门设计的电压增强高传输速率非平衡条件下,吸附在 Ag(111) 表面的无金属萘菁分子中两氢转移过程的顺式中间体将在双 C 形态的复合图像中可见。在理论预测的指导下,在调整扫描温度和偏压下,STM 实验实现了顺式中间体的直接可视化。这项工作展示了一种直接可视化难以捉摸的中间体的实用方法,增强了对氢原子量子动力学的理解。