(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版的版权持有人于2021年4月26日发布。 https://doi.org/10.1101/2021.04.24.24.4441242 doi:Biorxiv Preprint
摘要:神经母细胞瘤 (NBL) 是一种交感神经系统的胚胎恶性肿瘤,主要影响 5 岁以下儿童。NBL 高度异质性,范围从自发性退化到高度侵袭性疾病。预后不良的危险因素之一是受体酪氨酸激酶间变性淋巴瘤激酶 (ALK) 的异常,该酶参与神经系统的正常发育和功能。ALK 突变导致 ALK 及其下游信号通路的组成性激活,从而驱动肿瘤发生。目前已合成了多种立体 ALK 抑制剂,其中几种抑制剂已在临床上使用。主要挑战是对立体抑制剂的获得性耐药性和癌细胞在靶向治疗时的通路逃避策略。本综述将全面概述 ALK 抑制剂在高风险 NBL 中的临床应用以及新型抑制剂的潜力和局限性。由于联合治疗方案不太可能引起耐药性,因此将特别关注 ALK 抑制剂与针对下游信号通路或影响癌细胞生存和增殖的药物的联合治疗。
Asanuma, C.、Thach, WT 和 Jones, EG (1983)。猴子丘脑腹侧区小脑末梢分布及其与其他传入末梢的关系。《脑研究评论》,5 (3),237 – 265。https://doi.org/10.1016/0165-0173(83)90015-2 Behrens, TEJ、Johansen-Berg, H.、Woolrich, MW、Smith, SM、Wheeler-Kingshott, C.、Boulby, PA、Barker, GJ、Sillery, EL、Sheehan, K.、Ciccarelli, O.、Thompson, AJ、Brady, JM 和 Matthews, PM (2003)。使用扩散成像对人类丘脑和皮质之间的连接进行非侵入性映射。 Nature Neuroscience,6 (7),750 – 757。https://doi.org/10.1038/nn1075 Benabid, AL, Pollak, P., Hoffmann, D., Gervason, C., Hommel, M., Perret, JE, de Rougemont, J., & Gao, DM (1991)。通过长期刺激丘脑腹侧中间核长期抑制震颤。The Lancet,337 (8738),403 – 406。https://doi.org/10. 1016/0140-6736(91)91175-T Chen, H., Hua, SE, Smith, MA, & Lenz, FA (2006)。人类小脑丘脑破坏对伸手适应性控制的影响。大脑皮层,16 (10),1462 – 1473。Chopra, A.、Klassen, BT 和 Stead, M. (2013)。深部脑刺激在治疗特发性震颤方面的当前临床应用。神经精神疾病和治疗,9,1859 – 1865。https://doi.org/10.2147/NDT.S32342 Crowell, AL、Ryapolova-Webb, ES、Ostrem, JL、Galifianakis, NB、Shimamoto, S.、Lim, DA 和 Starr, PA (2012)。运动障碍中感觉运动皮层振荡:皮层电图研究。 Brain , 135 (2), 615 – 630. https://doi.org/10.1093/brain/awr332 Cury, RG, Fraix, V., Castrioto, A., Perez Fernandez, M., Krack, P., Chabardes, S., Seigneuret, E., Benabid, A.-L., & Moro, E. (2017). 丘脑深部脑刺激治疗帕金森病震颤,基本
针对肩袖节关节病的患者指示了反向总肩关节置换术(RSA),这种疾病以藻毛性关节炎和肩袖袖口不足为特征。RSA假体通过将肱骨头转换为插座,将腺体转化为半球,从而违背了自然的肩关节解剖结构,从而导致内侧旋转中心和延长的肱骨[1,2]。这种设计改变了肩膀的生物力学,增加了三角肌纤维纤维的募集,并最终与肩部强度相比,与常规的总肩关节置换术相比,具有卓越的稳定性和控制性[1]。在恢复过程中,肩袖和支撑肌肉,尤其是三角肌,适应肩膀改变的生物力学,对肌肉活动,功能结果和运动范围产生重大影响[3-5]。肌肉活动或适应性可以通过肌肉测试来评估,使用小针电电极或粘附在皮肤上的表面电极进行评估。表面肌电图(SEMG)最近已被证明是一种有效且无创的工具,用于量化肩部中的个体肌肉激活,并已在临床诊断和康复环境中广泛使用[3,6-9]。
鳗鱼技术已应用于材料中,以绘制单个原子敏感性5-7和生物科学的映射元素,以检测和量化许多内部元素。8–11鳗鱼技术可以在透射电子显微镜(TEM)模式中应用,通常称为能量过滤TEM(EFTEM)12-16或扫描透射透射电子显微镜(STEM)模式,称为Stem-Eels或EELS Spectrum-Imimiganging。17–22尽管EFTEM模式的灵敏度低于Stem-Eels,但它提供了更大的视野,至少要大的数量级,通常为10 5 –10 7像素,而茎 - 茎中的10 3 –10 5像素。10,17对于某些生物学应用,更包含的视野与分辨率或灵敏度一样重要,就像将颜色EM电子探针应用于同时在细胞中标记多个细胞蛋白/细胞器的情况一样。23–25在我们开发的方法中,多个靶向分子的定位是通过序列沉积与二氨基苯胺结合的序列沉积来实现的,二氨基苯胺被正交光泽剂/过氧化物酶选择性地氧化。23然后,通过EFTEM模式获得的LAN比的核心损坏或高损坏(M 4,5边)元素图/地图在伪色中叠加在传统的电子显微照片上,以创建颜色的EM图像。23,26,27
摘要 本研究研究了铜突起对连接电阻的影响,作为中通孔硅通孔 (TSV) 晶片混合键合的详细数据。在制备了多个具有不同铜突起量的 Cu TSV 晶片和 Cu 电极晶片并通过表面活化键合方法使用超薄 Si 膜进行键合后,通过四端测量评估了键合晶片的连接电阻(即 TSV、Cu 电极和界面电阻之和)。结果表明,Cu 突起量是中通孔 TSV 晶片与超薄 Si 膜混合键合的关键参数,通过调节 Cu 突起可以在不进行热处理的情况下实现 TSV 和 Cu 电极之间的电连接。关键词 中通孔 硅通孔(TSV) 直接Si/Cu研磨 混合键合I.引言 随着摩尔定律的放缓,带有硅通孔(TSV)[1-6]的三维集成电路(3D-IC)已经成为实现高速、超紧凑和高功能电子系统的可行解决方案。3D-IC在某些电子系统中的接受度越来越高。然而,要将3D-IC技术应用于许多电子系统,需要进一步降低TSV形成成本、实现TSV小型化和提高TSV产量。在各种TSV形成工艺中,中通孔Cu-TSV工艺可以有效减小TSV尺寸并提高TSV产量,因为该工艺易于形成(1)小TSV,并且(2)TSV与多层互连之间的电接触。然而,如果晶圆背面露出的TSV高度变化很大,则可能会发生TSV断裂或接触失效。在之前的研究中,我们提出了一种 Cu-TSV 揭示工艺,包括直接 Si/Cu 研磨和残留金属去除 [7-9](图 1),以克服这一问题。首先,使用新型玻璃化砂轮进行直接 Si/Cu 研磨,并使用高压微射流 (HPMJ) 对砂轮进行原位清洁。由于非弹性
在人类基因组中的短串联重复扩张在多种神经系统疾病中的代表性过多。最近表明,亨廷顿(HTT)重复膨胀具有完整的外观,即40或更多的CAG重复序列通常会导致亨廷顿氏病(HD),在肌萎缩性侧索硬化症患者(ALS)的患者中代表过多。携带HTT重复膨胀的患者是渗透率降低(36-39 CAG重复序列),还是具有中间渗透率的等位基因(27-35 CAG重复序列),尚未研究ALS的风险。在这里,我们研究了HTT重复扩张在运动神经元疾病(MND)队列中的作用,搜索了扩展的HTT等位基因,并研究了与表型和神经病理学的相关性。包括含有C9ORF72六核苷酸重复扩张(HRE)的MND患者,以调查该组HTT重复扩张是否更常见。我们发现,与欧洲血统的其他人群相比,该队列中的中间体(5.63%–6.61%)和降低(范围为0.57%–0.66%)HTT基因扩展的率降低(范围为0.57%–0.66%),但没有MND队列与对照组之间的差异,对C9 orff的状态没有差异。在三名中间或降低渗透率HTT等位基因的患者尸检后,在尾状核和额叶中观察到亨廷顿蛋白夹杂物,但在神经系统的不同部位未检测到明显的体细胞骨髓。因此,我们首次证明了具有MND和中间和降低的渗透率HTT重复扩张的个体中的亨廷顿蛋白包含物,但是需要更多的临床病理研究来进一步了解HTT基因扩张相关的多oi ofiotiropropropy的影响。
1西德癌症中心核医学系,德国埃森埃森大学医院; 2癌症联盟伙伴网站Essen/d€usseldorf,DKFZ和德国埃森的埃森大学医院; 3西德癌症中心医学肿瘤学系,德国埃森埃森大学医院; 4加拿大Qu Ebec,Sherbrooke,Sherbrooke大学核医学和放射生物学系; 5德国埃森大学埃森大学医院病理研究所; 6德国埃森大学埃森大学医院诊断与介入放射学与神经放射学研究所; 7国家肿瘤疾病西部,德国埃森校园埃森校园;和8桥研究所实验性肿瘤疗法和实体瘤转化肿瘤学部,西德癌症中心,埃森大学医院,德国埃森,德国1西德癌症中心核医学系,德国埃森埃森大学医院; 2癌症联盟伙伴网站Essen/d€usseldorf,DKFZ和德国埃森的埃森大学医院; 3西德癌症中心医学肿瘤学系,德国埃森埃森大学医院; 4加拿大Qu Ebec,Sherbrooke,Sherbrooke大学核医学和放射生物学系; 5德国埃森大学埃森大学医院病理研究所; 6德国埃森大学埃森大学医院诊断与介入放射学与神经放射学研究所; 7国家肿瘤疾病西部,德国埃森校园埃森校园;和8桥研究所实验性肿瘤疗法和实体瘤转化肿瘤学部,西德癌症中心,埃森大学医院,德国埃森,德国
中央银行应努力实现 6% 或 10% 的失业率目标。政策的最终目标是每月观察一次的变量(就失业率和消费者价格指数而言)以及每季度观察一次的实际 GDP 或 GDP 平减指数。由于中间目标的观察频率更高,中央银行可以更及时地收集有关其实现中间目标情况的信息。中央银行在多个中间目标方面有经验,并且面临着其他几个中间目标的提案。中央银行政策的传统中间目标包括货币供应量(货币基础、M1 或 M2)和利率(通常是短期利率,如国库券利率)。然而,最近有人提议使用价格或名义 GDP 作为中间目标。我们将依次讨论这些目标。货币总量作为中间目标在印度的经济背景下,中央银行希望通货膨胀率为 4%,并预计实际 GDP 增长 3%。在这种情况下,名义GDP将增长7%。央行可能预期名义利率将相当稳定在6%,实际利率为2%,预期增长率为4%,即3%,而名义货币余额的需求将以名义GDP增长率7%的速度增长。有了这些目标和预期,央行可能会决定采用中间货币目标。央行在其增长率公式中使用数量方程,推断名义GDP增长率为7%,速度增长率为0%意味着货币增长率应该是7%。因此,央行可能会采用比去年增加7%的中间货币供应量目标。货币供应量的这一目标水平在图19.6中标记为Mt