摘要:热锻模具受到周期性热应力作用,经常以热疲劳、磨损、塑性变形和断裂的形式失效。为延长热锻模具的使用寿命并降低总生产成本,提出了一种热锻模具梯度多材料线材电弧增材再制造方法。多材料梯度界面的性能对决定最终产品的整体性能起着至关重要的作用。本研究将热锻模具再制造区分为过渡层、中间层和强化层三个沉积层。在5CrNiMo热锻模具钢上进行了梯度材料线材电弧增材制造实验,对梯度界面的微观组织、显微硬度、结合强度和冲击性能进行了表征和分析。结果表明,梯度添加剂层及其界面无缺陷,梯度界面获得了高强度的冶金结合。梯度添加剂层的组织从底层到顶层呈现贝氏体到马氏体的梯度转变过程。显微硬度从基体层到表面强化层逐渐增加,在100 HV范围内形成三级梯度变化,3个界面的冲击韧性值分别为46.15 J/cm 2 、54.96 J/cm 2 、22.53 J/cm 2 ,冲击断口形貌从延性断裂到准解理断裂,梯度界面力学性能表现为硬度和强度梯度增加,韧性梯度降低。采用该方法再制造的热锻模具实际应用,平均寿命提高了37.5%,为热锻模具梯度多材料丝电弧增材再制造的工程应用提供了科学支撑。
新的土木工程大楼是一个世界一流的研究空间,是工程部土木工程部和新成立的国家基础设施研究机构的所在地。在这里,研究人员正在与工程部的工程师合作探索可持续的基础设施和城市。建筑物标志着工程部新校园位于西剑桥的第一阶段的完成,该阶段也由格里姆肖(Grimshaw)设计。将于2026年完成,新校园将使整个工程部重新融合到一个站点,提供100,000平方米的研究,教学和协作空间。摘要:可持续性是核心驱动力,工程部设定了雄心勃勃的目标,用于在其新校园内设计和建造所有建筑物。我们的简介要求该设计将全寿命/碳最小化,同时为乘员提供一个宜人的环境 - 在可能的情况下促进自然通风,避免“绿色蓝光”,确保未来的灵活性并确保建筑物的性能达到预测的设计性能目标。设计注意事项:建筑物的形式,群众和位置已由当地计划要求,更广泛的工程校园总体规划以及最终用户的技术要求告知。选择该建筑物的位置是为了增强现有的城市领域,通过与现有建筑物和西方的草坪保持一致,在建筑物主要入口的方法中创造了一个新的庭院。该建筑物的质量和高度提供了与现有建筑物西部的连续性,同时最大程度地降低了对东方住宅邻国的视觉影响。它的形式和内部布局是由在实验室进行的研究需求驱动的,重型实验室位于底楼,中间层的较轻的实验室,以及在上层庭院围绕上层庭院安排的办公室
在人类活动导致的气候危机背景下[1,2],由于基于混合金属卤化物钙钛矿材料的太阳能装置的发展,光伏领域在过去几年中取得了迅速发展。 [3] 目前,这些装置的效率已经与商业硅电池相媲美。 [4] 迄今为止,最高效的钙钛矿太阳能电池 (PSC) 是通过使用介孔 TiO 2 (m-TiO 2) 作为电子传输层 (ETL) 的介观结构实现的。介孔支架通常掺杂吸湿化合物如锂盐以增强其电子迁移率。 [5–8] 虽然锂处理提高了钙钛矿装置的性能,因为它主要提高了电池的开路电压和填充因子,但它也导致太阳能装置对环境湿度的不稳定性更大,以及其光伏参数的低可重复性。 [9,10] 事实上,目前 PSC 实际应用面临的一些最重要瓶颈与创纪录的效率无关,而是与以下两个方面有关:1) 缺乏可重复的制造方法;2) 在实际室外条件下(湿度、紫外线照射、温度等)固有的低稳定性。在第一种情况下,PSC 的效率分散性在更受认可的实验室中并不狭窄,正如 Saliba 等人 [9] Jimenez-López 等人 [11] Qiu 等人 [12] 等许多学者在该主题的参考文章中对此进行了彻底讨论。其次,PSC 对环境条件的敏感性,尤其是钙钛矿材料,要求使用干气氛手套箱,这阻碍了这些太阳能装置的大规模生产。 [13–18] 在此背景下,许多研究人员致力于寻找钝化材料来修改中间层,这些材料不会损害器件的性能,但可以提高器件的稳定性。到目前为止,用于钝化界面的材料包括二维钙钛矿、金属氧化物化合物或绝缘有机材料。这些报道的方法通常使用溶液法,然而,尚未探索可扩展到工业制造的替代真空工艺。[19–21]
硅基氮化镓高电子迁移率晶体管 (HEMT) 以其低成本、大面积应用等优势在功率器件应用领域引起了广泛关注 [1]。近年来,双向开关在轧机、电梯、风力发电等许多工业双向功率转换应用中备受青睐。此外,常闭单向 HEMT 是实现高性能双向开关的重要器件 [2,3]。常闭单向 HEMT 通常通过在 HEMT 的漏极中嵌入肖特基势垒二极管 (SBD) 来实现。目前已经采用了氟注入或金属氧化物半导体技术。然而,在常闭单向 HEMT 中尚未见具有良好阈值电压 (V th ) 可控性和稳定性的 p-GaN 栅极技术 [4] 的报道。此外,凹陷式肖特基漏极[5]和场板技术[6]可以为实现具有小开启电压(V on )、高击穿电压(BV)和良好动态性能的单向HEMT提供相关参考。本研究通过实验证明了一种具有凹陷肖特基漏极和复合源漏场板的单向p-GaN HEMT(RS-FP-HEMT)。研究并揭示了漏极电压应力对动态性能的影响。实验。图1(a)和(b)分别显示了传统的带欧姆漏极的p-GaN HEMT(C-HEMT)和提出的RS-FP-HEMT的示意横截面结构。这两个器件都是在GaN-on-Si晶片上制造的。外延结构由 3.4 µ m 缓冲层、320 nm i-GaN 沟道层、0.7 nm AlN 中间层、15 nm Al 0.2 Ga 0.8 N 阻挡层和 75 nm p-GaN 层(Mg 掺杂浓度为 1 × 10 19 cm −3)组成。器件制造首先通过反应离子刻蚀 (RIE) 形成 p-GaN 栅极岛。然后,蒸发 Ti/Al/Ni/-Au 金属堆栈并在 N 2 环境中以 850 ◦C 退火 30 秒。形成凹陷的肖特基漏极
4联邦技术大学化学工程系,P.M.B。 65 Minna,尼日利亚,尼日利亚 *通讯作者电子邮件地址:fredology12@gmail.com电话:+23480358888263摘要氧化物(GO)通过改良的Hummer的方法从石墨中合成了氧化物(GO),然后通过热和化学物质减少和化学化学降低,以产生可减轻的石墨烯(Rgue ox oxele of Chore of Chemande of Chemente of Chemente of Chore oxe ox oxele of consplese of consplese of consplese of consepers of consples of consples pgo consples samples samples。 一套表征技术,包括傅立叶变换红外光谱法(FTIR),扫描电子显微镜(SEM),能量散热性X射线光谱学(EDS),紫外可见光谱,紫外线光谱,热力学分析(TGA),X射线衍射(XRD)和霍尔效率(XRD)和霍尔效应效应效应(XRD)样品的特性。 FTIR分析证实了石墨的成功官能化,并随后还原为减少氧化石墨烯,随着降低温度的升高,峰强度降低。 GO的紫外可见光谱显示在235 nm处的最大吸收,这证实了GO的合成,而还原显示了随着退火温度的升高,吸收峰的红色移动显着,这表明频带gap的降低。 XRD分析证明了氧官能团的去除。 GO的X射线衍射(XRD)分析显示在2θ= 10.74°时衍射显示出具有含氧官能基团的完全氧化石墨烯氧化物,因此中间层间距(D 002)从3.341Å(石墨)增加到8.228Å(GO)。 关键字:太阳能电池,氧化石墨烯,氧化石墨烯还原,孔传输材料。4联邦技术大学化学工程系,P.M.B。65 Minna,尼日利亚,尼日利亚 *通讯作者电子邮件地址:fredology12@gmail.com电话:+23480358888263摘要氧化物(GO)通过改良的Hummer的方法从石墨中合成了氧化物(GO),然后通过热和化学物质减少和化学化学降低,以产生可减轻的石墨烯(Rgue ox oxele of Chore of Chemande of Chemente of Chemente of Chore oxe ox oxele of consplese of consplese of consplese of consepers of consples of consples pgo consples samples samples。一套表征技术,包括傅立叶变换红外光谱法(FTIR),扫描电子显微镜(SEM),能量散热性X射线光谱学(EDS),紫外可见光谱,紫外线光谱,热力学分析(TGA),X射线衍射(XRD)和霍尔效率(XRD)和霍尔效应效应效应(XRD)样品的特性。FTIR分析证实了石墨的成功官能化,并随后还原为减少氧化石墨烯,随着降低温度的升高,峰强度降低。紫外可见光谱显示在235 nm处的最大吸收,这证实了GO的合成,而还原显示了随着退火温度的升高,吸收峰的红色移动显着,这表明频带gap的降低。XRD分析证明了氧官能团的去除。GO的X射线衍射(XRD)分析显示在2θ= 10.74°时衍射显示出具有含氧官能基团的完全氧化石墨烯氧化物,因此中间层间距(D 002)从3.341Å(石墨)增加到8.228Å(GO)。关键字:太阳能电池,氧化石墨烯,氧化石墨烯还原,孔传输材料。还原后,D 002从8.228Å(GO)逐渐减少到3.387Å(HRGO300),这表明逐渐去除了插入的氧分子,因此在石墨烯中逐渐消除了SP 2杂交的SP 2杂交。EDS分析表明,随着减少过程的退火温度的增加,碳与氧(C/O)比从1.78增加到2.75,从而进一步证实了氧官能团的去除。The Hall effect data showed hole mobility of 4.634 x10 1 (GO), 4.831 x10 1 (HRGO200), and 5.462 x10 0 (HRGO300) with conductivities of 8.985 x10 -5 (GO), 1.087 x10 0 (HRGO200) and 1.791 x10 1 1/Ω cm, suggesting an increase in conductivity as the annealing temperature increased as revealed in the eds。在被识别为孔传输材料的三个样品中,最高C/O比为2.75的样品HRGO300具有最高的电导率,因此最适合用作钙钛矿太阳能电池中的孔传输材料。
在计算机视觉和图像处理研究领域的众多主题中,边缘检测在从卫星成像到医学筛查、物体识别等广泛领域中发挥着重要作用。它是一种图像处理技术,用于在具有不连续性的数字图像中查找边界/边缘,以呈现图像的全局视图和图像的最关键轮廓。强大的基于边缘的形状特征为计算机视觉应用提供了更具体的分析。传统边缘检测方法利用低级视觉线索来构建手工特征,然后使用基于阈值的方法对边缘和非边缘像素进行分类。传统方法的结果在对象级别缺乏语义。如今,基于卷积神经网络的方法已成为图像处理领域的主流。在基于深度网络的边缘检测方法中,整体嵌套边缘检测 (HED) [1] 是成功的框架之一。它产生五个中间侧输出并沿网络路径进行深度监督。其最终融合结果与人类视觉的差距在 2% 以内。从那时起,几种方法使用类似的架构来进一步提高准确性。这些努力主要集中在提高中间输出的质量或增强深度监督策略上。然而,这些方法融合了中间层,而没有考虑每个侧输出内的层次边缘重要性。这给网络带来了困境:要包含所需的特征,它必须接受许多不需要的数据,反之亦然。因此,结果通常包含更多噪声和粗边缘,同时缺少一些关键边界。为了解决这个问题,尺度不变显著边缘检测(SISED)框架[2]可以在不增加网络复杂度的情况下,定位和提取重要的尺度不变显著边缘(SISE)作为每个侧输出的子集。归一化哈达玛积是SISED的关键操作,其中应用乘法运算来促进多尺度侧输出之间相互一致的特征,同时抑制尺度表达较弱的特征。SISED分层计算边缘重要性以增强边缘结果并达到最先进的性能。通讯作者:胡刚(hug@buffalostate.edu)
将人工神经网络 (ANN) 与脑成像技术的输出进行比较,最近在 (计算机) 视觉和基于文本的语言模型方面取得了实质性进展。在这里,我们提出了一个框架来比较口语语言表征的生物和人工神经计算,并提出了对这一范式的几个新挑战。使用 Beguˇs 和 Zhou (2021b) 提出的技术,我们可以分析人工神经网络中间卷积层中任何声学属性的编码。这使我们能够以一种比大多数现有专注于相关性和监督模型的提案更易于解释的方式测试大脑和人工神经网络之间语音编码的相似性。我们将对原始语音进行训练的完全无监督深度生成模型(生成对抗网络架构)引入大脑和 ANN 比较范式,这使得可以测试人类语音的产生和感知原理。我们提出了一个框架,将测量人脑复杂听觉脑干反应 (cABR) 的电生理实验与深度卷积网络中的中间层并行。我们比较了 cABR 相对于脑干实验中的刺激的峰值延迟,以及中间卷积层相对于深度卷积网络中的输入/输出的峰值延迟。我们还检查并比较了之前的语言接触对 cABR 峰值延迟和语音属性的中间卷积层的影响。具体而言,英语和西班牙语使用者对语音属性 (即 VOT =10 毫秒) 的感知不同,有声 (例如 [ba]) 和无声 (例如 [pa])。至关重要的是,英语和西班牙语使用者的 cABR 峰值延迟到 VOT 语音属性是不同的,并且英语训练的计算模型和西班牙语训练的计算模型之间的中间卷积层的峰值延迟也不同。根据八个训练网络(包括复制实验)的结果,人类大脑和中间卷积网络在峰值延迟编码方面表现出了相当大的相似性。所提出的技术可用于比较人类大脑和中间卷积层之间对任何声学特性的编码。
摘要。最近已经开发了许多基于新颖的玻璃设计,低发射率薄片涂层以及专有荧光中间层类型的现代玻璃和窗户产品。当今的高级窗户可以控制诸如热发射,热量增益,颜色和透明度之类的属性。在新型的玻璃产品中,还通过图案化的半导体薄膜能量转换表面或使用发光浓度型方法来实现较高的透明度。通常,对于建筑行业和农业的应用(温室)应用,半透明的和高度透明的PV窗口是专门设计的,包括特殊类型的发光材料,衍射微结构,定制的玻璃系统和电路。最近,在构建集成的高透明太阳能窗口中已经证明了显着的进步(具有高达70%的可见光传输,电力输出p max 〜30 33 w p /m 2,例如< /div>,ClearVue PV太阳能窗);这些预计将在温室装置中为智能城市和先进的Agrivoltaics的发展增加动力。目前(2023年),这些ClearVue窗口设计是唯一可以在建筑物中提供明显的能源节省的视觉清晰和部署的建筑材料,同时又具有大量可再生能源的能源。这项研究的目的是将ClearVue®PV窗口系统的最新工业化开发置于发光浓缩器领域中先前研究的更广泛的背景,并提供一些有关在研究温室建筑物包裹中部署的几种Clearvue窗口设计类型的测量性能特征的细节,以阐明其能量差异,并在其相应的差异中进行了差异。提供了这些最近开发的透明Agrivoltaic建筑材料的实际应用潜力的评估,重点关注可再生能源产生数字以及在一项长期研究中观察到的季节性趋势。本文报道了2021年初在默多克大学(澳大利亚珀斯)建造的基于研究温室的Agrivoltaic装置的测量绩效特征。默多克大学的太阳能温室已经证明了由于其建筑物的现场能源生产而产生的明显节省的商业粮食生产潜力。
由于地形驱动的动力学在(次)公里(例如Bora风)和复杂的海洋测深的测定法上引起的,其中包括许多通道,凹陷和山脊,在半封闭的Adriatic区域内的大气 - 海洋动力学在可用的环境区域模型中无法很好地复制。因此,特定开发了亚得里亚海和海岸(Adrisc)公里大气层模型,以准确评估历史(1987-2017)和远处(2070-2100)条件下的亚得里亚海气候危害。在这项研究中,我们分析了气候变化对预计的亚得利亚趋势,可变性和极端事件的影响。在大气中,我们的结果主要遵循已经发表的文献:强烈的土地对比,干旱增加和极端的降雨事件以及沿海地区的风速下降。在海洋中,表面和中等温度的强度和恒定升高与盐度降低有关,除非夏季盐度在沿海地区上升的表面。在底部和海洋循环中,我们的结果表现出强烈的对比。在沿海地区,底温度上升,底部盐度的速度降低了,而当前速度的变化可以忽略不计。在亚得里亚海最深的部分,负底温度趋势会导致比表面慢2.5°C慢,而底部盐度增加。此外,洋流在表面和中间层中加速,但在底部减速。这些海洋的结果表明,北部亚得里亚海中茂密的水的形成减少,南部亚得里亚海气旋回旋的强化和收缩,以及在代码深处的最深部分的垂直地层加强可能与亚种式水水和亚法利亚水平的变化相关的垂直地层。鉴于这些变化对亚得里亚海沿海社区和海洋生物的潜在影响,这项研究强调了增加亚得里亚海地区正在进行的千年规模建模工作,旨在实施政策和适应计划,以更好地针对该规范区域预测的当地气候变化量身定制。鉴于这些变化对亚得里亚海沿海社区和海洋生物的潜在影响,这项研究强调了增加亚得里亚海地区正在进行的千年规模建模工作,旨在实施政策和适应计划,以更好地针对该规范区域预测的当地气候变化量身定制。
病毒rota病毒是一种属于依维氏菌家族的双链RNA病毒。它具有一个复杂的轮状结构,其三层二十面体蛋白质衣壳由外层,中间层和内芯层组成。外壳外带有2种结构蛋白,VP4和VP7抗原,在分类和疫苗发育中很重要。在人类和动物中发现了七组病毒A-G,以及仅在动物中发现的D,E,F和G。A组Rota病毒具有最大的临床意义。 有几种基于VP4和VP7抗原的血清型。 流行病学Rota病毒胃炎是婴儿和幼儿相关疾病和死亡的主要原因。 rota病毒在世界各地都存在,它影响了富人和穷人。 全球95%的儿童在生命的前3至5年内被感染,无论种族或社会经济地位如何。 最严重的感染发生在2岁以下的儿童中,近一半的Rota病毒死亡发生在非洲。 据估计,在全球范围内,Rota病毒每年可引起2500万个门诊就诊,每年200万次入院和527,000次死亡,年龄在5岁以下的儿童中。 这是最常见的腹泻病原体,导致工业化和较不发达国家住院,两者均约为40%。 在过去的3年中,肯尼亚的轮状病毒患病率在11-56%之间,G1是主要基因型。A组Rota病毒具有最大的临床意义。有几种基于VP4和VP7抗原的血清型。流行病学Rota病毒胃炎是婴儿和幼儿相关疾病和死亡的主要原因。rota病毒在世界各地都存在,它影响了富人和穷人。全球95%的儿童在生命的前3至5年内被感染,无论种族或社会经济地位如何。最严重的感染发生在2岁以下的儿童中,近一半的Rota病毒死亡发生在非洲。据估计,在全球范围内,Rota病毒每年可引起2500万个门诊就诊,每年200万次入院和527,000次死亡,年龄在5岁以下的儿童中。这是最常见的腹泻病原体,导致工业化和较不发达国家住院,两者均约为40%。在过去的3年中,肯尼亚的轮状病毒患病率在11-56%之间,G1是主要基因型。
